• Title/Summary/Keyword: Metal Impurity

Search Result 116, Processing Time 0.022 seconds

Study on the growth of 4H-SiC single crystal with high purity SiC fine powder (고순도 SiC 미분말을 적용한 4H-SiC 단결정 성장에 관한 연구)

  • Shin, Dong-Geun;Kim, Byung-Sook;Son, Hae-Rok;Kim, Moo-Seong
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.29 no.6
    • /
    • pp.383-388
    • /
    • 2019
  • High purity SiC fine powder with metal impurity contents of less than 1 ppm was synthesized by improved carbothermal reduction process, and the synthesized powder was used for SiC single crystal growth in RF heating PVT device at temperature above 2,100℃. In-situ x-ray image analyzer was used to observe the sublimation of the powder and single crystal growth behavior during the growth process. SiC powder was used as a source of single crystal growth, exhausted from the outside of the graphite crucible at the growth temperature and left graphite residues. During the growth, the flow of raw materials was concentrated in the middle and influenced the growth behavior of SiC single crystals. This is due to the difference in temperature distribution inside the crucible due to the fine powder. After the single crystal growth was completed, the single crystal ingot was cut into a 1 mm thick single crystal substrate and finely polished using a diamond abrasive slurry. A dark yellow 4H-SiC was observed overall of single crystal substrate, and the polycrystals generated in the outer part may be caused by the incorporation of impurities such as the bubble layer mixed in the process of attaching the seed crystal to the seed holder.

A Study on Na Removal Method in H2WO4(Aq) by Electrodialysis in APT(S) Manufacturing (APT(S) 제조 시 전기투석법을 이용한 H2WO4(Aq)내의 Na 제거 방법에 관한 연구)

  • Kang, Yong-Ho;Hyun, Soong-Keun
    • Resources Recycling
    • /
    • v.26 no.6
    • /
    • pp.65-72
    • /
    • 2017
  • APT (Ammonium paratungstate) is widely used in various industries such as metal cutting tools, drill bits, mining tools, and military inorganic materials. In order to produce high purity APT(S), an impurity purification step in an aqueous $Na_2WO_4$ convert $H_2WO_4$ solution is required. It is difficult to remove impurity Na of 200 ppm or less when $H_2WO_4(S)$ is prepared by adding HCl(Aq) to an aqueous solution of $Na_2WO_4$, which is a well-known conventional wet method. However, in this study, a more economical and efficient method of removing Na through electrodialysis using a cationic membrane was studied. A large amount of Na in aqueous solution of $H_2WO_4$ due to $Na_2CO_3(S)$ which was added to dissolve waste tungsten carbide drill and scrap was removed to 20ppm or less through electrodialysis process, and it was confirmed that the effect of Na removal was great when using electrodialysis.

Scaling up Hydrothermal Synthesis of Na-A Type Zeolite from Natural Siliceous Mudstone and Its Heavy Metal Adsorption Behavior (규질 이암으로부터 Na-A형 제올라이트의 scale-up 수열합성 및 중금속흡착)

  • Bae, In-Kook;Jang, Young-Nam;Shin, Hee-Young;Chae, Soo-Chun;Ryu, Kyoung-Won
    • Journal of the Mineralogical Society of Korea
    • /
    • v.21 no.4
    • /
    • pp.341-347
    • /
    • 2008
  • The feasibility of commercializing the hydrothermal synthesis of Na-A type zeolite from siliceous mudstone has been conducted using a 50-liter bench-scale autoclave and the application of the zeolite as an environmental remediation agent. Siliceous mudstone, which is widely distributed around the Pohang area, was adopted as a precursor. The siliceous mudstone is favorable for the synthesis of zeolite because it contains 70.7% $SiO_2$ and 10.0% $Al_2O_3$, which are major ingredient of zeolite formation. The synthesis of zeolite was carried out under the following conditions that had been obtained from the previous laboratory-scale tests: 10hr reaction time, $80^{\circ}C$ reaction temperature, $Na_2O/SiO_2$ ratio = 0.6, $SiO_2/Al_2O_3$ ratio = 2.0 and $H_2O/Na_2O$ ratio= 98.6. The crystallinity and morphology of the zeolite formed were similar to those obtained from the laboratory-scale tests. The recovery and cation exchange ion capacity were 95% and 215 cmol/kg, respectively, which are slightly higher than those obtained in laboratory scale tests. To examine the feasibility of the zeolite as an environmental remediation agent, experiments for heavy metal adsorption to zeolite were conducted. Its removal efficiencies of heavy metals in simulated waste solutions decreased in the following sequences: Pb > Cd > Cu = Zn > Mn. In a solution of 1500 mg/L total impurity metals, the removal efficiencies for these impurity metals were near completion (> 99%) except for Mn whose efficiency was 98%. Therefore, the synthetic Na-A type zeolite was proven to be a strong absorbent effective for removing heavy metals.

Film Properties of MOCVD TiN prepared by TDMAT and TDMAT/$NH_3$ (TDMAT와 TDMAT/$NH_3$ 로 형성한 MOCVD(Metal Organic Chemical Vapor Deposition) Titanium Nitride 박막의 특성)

  • Baek, Su-Hyeon;Kim, Jang-Su;Park, Sang-Uk;Won, Seok-Jun;Jang, Yeong-Hak;O, Jae-Eung;Lee, Hyeon-Deok;Lee, Sang-In;Choe, Jin-Seok
    • Korean Journal of Materials Research
    • /
    • v.5 no.7
    • /
    • pp.775-780
    • /
    • 1995
  • Thin films of titanium nitride are formed using the tetrakis-dimethyl-amino-titanium (TDMAT(Ti[N($CH_3$)$_2$]$_4$)) under various conditions. The formation of TiN films has been obtained from the thermal decomposition of the Ti-precursor and the gas phase reaction between TDMAT and ammonia(NH$_3$). The resistivity of the MOCVD film can be attributed to their impurity. Especially the curve fitting graph of XPS data is revealed that main impurities in the films as carbon and oxygen make various interstitial compounds which has influenced physical and electrical properties of the film. In the contact hole with the aspect ratio of 3:1 and the diameter of 0.5${\mu}{\textrm}{m}$, the SEM morphology shows that the step coverage is more decreased in the films formed y flowing ammonia additionally than the films formed by pyrolysis of TDMAT and the phenomenon is probably related with the activation energy.

  • PDF

Development of Pearl Pigment which Has the Similar Properties of Snow in Make-up Products (눈의 물리적인 특성과 유사한 펄 원료 개발 및 이를 이용한 화장료 조성물 제조방법)

  • Lee, Yun-Ha;Kim, Kyung-Nam;Sunwoo, Gun;Rick, Norbert;Reichnek, Antje;Choi, Yeong-Jin;Ko, Seung-Yong;Han, Sang-Hun;Kang, Hak-Hee;Lee, Ok-Sub
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.34 no.3
    • /
    • pp.167-173
    • /
    • 2008
  • Pearlescent pigments have been widely used in cosmetic applications. Up to date; the most widely used pearl effect pigment is the mica-based pigment, which uses natural mica as the substrate that is in turn coated with metal of oxide interference layer. However, when natural mica is employed as a base material the final product often has a yellowish color, mainly due to the fact that natural mica contains low levels of iron as an impurity[1,2]. This study was focused on developing a pearl pigment which might have a similar sparkling effect as snow. This effect was found to be due to its structure and purity, and this concept was also applied to development of our pearl pigments. More specifically, this invented pearl effect pigments are the mixture of glass-flake and glass-flake coated metal oxides and present the optical properties of snow matrix such as refractive index and particle size, unlike only the glass-flake or glass-flake coated metal oxides to be applied in. Using base material having similar physical properties (refractive index and particle size) as snow matrix as platelet for pearl effect pigments, these invented pigments present a three-dimensional glittering effect of the snow matrix. With this invented figments an applied; we achieved the beauty of snow crystal from makeup products containing these pigments.

Analysis of Heavy Metals in $[^{201}Tl]$TICI Injection Using Polarography (폴라로그래피를 이용한 $[^{201}Tl]$염화탈륨 주사액의 중금속 분석)

  • Chun, Kwon-Soo;Suh, Yong-Sup;Yang, Seung-Dae;Ahn, Soon-Hyuk;Kim, Sang-Wook;Choi, Kang-Hyuk;Lee, Dong-Hoon;Lim, Sang-Moo;Yu, Kook-Hyun
    • The Korean Journal of Nuclear Medicine
    • /
    • v.34 no.4
    • /
    • pp.336-343
    • /
    • 2000
  • Purpose: Thallous-201 chloride produced at Korea Cancer Center Hospital(KCCH) is used in detecting cardiovascular disease and cancer. Thallium impurity can cause emesis, catharsis and nausea, so the presence of thallium and other metal impurities should be determined. According to USP and KP, their amounts must be less than 2 ppm in thallium and 5 ppm in total. In this study, the detection method of trace amounts of metal impurities in $[^{201}Tl]$TICI injection with polarography was optimized without environmental contamination. Materials and Methods: For the detection of metal impurities, Osteryoung Square Wave Stripping Voltammetry method was used in Bio-Analytical System (BAS) 50W polarograph. The voltammetry was composed of Dropping Mercury Electrode (DME) as a working electrode, Ag/AgCl as a reference electrode and Pt wire as a counter electrode. Square wave stripping method, which makes use of formation and deformation of amalgam, was adopted to determine the metal impurities, and pH 7 phosphate buffer was used as supporting electrolyte. Results: Tl, Cu and Pb in thallous-201 chloride solution were detected by scanning from 300 mV to -800 mV Calibration curves were made by using $TINO_3,\;CuSO_4\;and\;Pb(NO_3){_2}$ as standard solutions. Tl was confirmed at -450 mV peak potential and Cu at -50 mV Less than 2 ppm of Tl and Cu was detected and Pb was not detected in KCCH-produced thallous-201 chloride injection. Conclusion: Detection limit of thallium and copper is approximately 50 ppb with this method. As a result of this experiment, thallium and other metal impurities in thallous-201 chloride injection, produced at Korea Cancer Center Hospital, are in the regulation of USP and KP Polarograph could be applied for the determination of metal impurities in the quality control of radiopharmaceuticals conveniently without environmental contamination.

  • PDF

Sintering Behavior and Electrical Properties of Strontium Titanate-Based Ceramic Interconnect Materials for Solid Oxide Fuel Cells (고체산화물 연료전지용 Strontium Titanate 세라믹 접속자 소재의 소결 거동 및 전기적 특성)

  • Park, Beom-Kyeong;Lee, Jong-Won;Lee, Seung-Bok;Lim, Tak-Hyoung;Park, Seok-Joo;Song, Rak-Hyun;Shin, Dong-Ryul
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2010.11a
    • /
    • pp.80.1-80.1
    • /
    • 2010
  • A strontium titanate ($SrTiO_3$)-based material with a perovskite structure is considered to be one of the promising alternatives to $LaCrO_3$-based materials since $SrTiO_3$ perovskite shows a high chemical stability under both oxidizing and reducing atmospheres at high temperatures. $SrTiO_3$ materials exhibit an n-type semiconducting behavior when it is donor-doped and/or exposed to a reducing atmosphere. In this work, $Sr_{1-x}La_xTi_{1-y}M_yO_3$ materials doped with $La^{3+}$ in A-sites and aliovalent transition metal ions ($M^{n+}$) in B-sites were synthesized by the modified Pechini method. The X-ray diffraction analysis indicated that the materials synthesized by the Pechini process exhibited a single curbic perovskite-type structure without any impurity phases, and are tolerant, to some extent, to cation doping. The sintering behaviors of $Sr_{1-x}La_xTi_{1-y}M_yO_3$ in $H_2/N_2$ and air were characterized by dilatometry and microstructural observations. The electrical conduction mechanism and the dopant effect are discussed based on the defect structures and the electrical conductivities measured at various oxygen partial pressures and temperatures.

  • PDF

Estimation of the impurity segregation in the multi-crystalline silicon ingot grown with UMG (Upgraded Metallurgical Grade) silicon (UMG(Upgraded Metallurgical Grade) 규소 이용한 다결정 잉곳의 불순물 편석 예측)

  • Jeong, Kwang-Pil;Kim, Young-Kwan
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.18 no.5
    • /
    • pp.195-199
    • /
    • 2008
  • Production of the silicon feedstock for the semiconductor industry cannot meet the requirement for the solar cell industry because the production volume is too small and production cost is too high. This situation stimulates the solar cell industry to try the lower grade silicon feedstock like UMG (Upgraded Metallurgical Grade) silicon of 5$\sim$6 N in purity. However, this material contains around 1 ppma of dopant atoms like boron or phosphorous. Calculation of the composition profile of these impurities using segregation coefficient during crystal growth makes us expect the change of the type from p to n : boron rich area in the early solidified part and phosphorous rich area in the later solidified part of the silicon ingot. It was expected that the change of the growth speed during the silicon crystal growth is effective in controlling the amount of the metal impurities but not effective in reducing the amount of dopants.

MBE growth and magnetic properties of epitaxial FeMn2O4 film on MgO(100)

  • Duong, Van Thiet;Nguyen, Thi Minh Hai;Nguyen, Anh Phuong;Dang, Duc Dung;Duong, Anh Tuan;Nguyen, Van Quang;Cho, Sunglae
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.318.2-318.2
    • /
    • 2016
  • FeM2X4 spinel structures, where M is a transition metal and X is oxygen or sulfur, are candidate materials for spin filters, one of the key devices in spintronics. Both the Fe and M ions can occupy tetrahedral and octahedral sites; therefore, these types of compounds can display various physical and chemical properties [1]. On the other hand, the electronic and magnetic properties of these spinel structures could be modified via the control of cation distribution [2, 3]. Among the spinel oxides, iron manganese oxide is one of promising materials for applications. FeMn2O4 shows inverse spinel structure above 390 K and ferrimagnetic properties below the temperature [4]. In this work, we report on the structural and magnetic properties of epitaxial FeMn2O4 thin film on MgO(100) substrate. The reflection high energy electron diffraction (RHEED) and X-ray diffraction (XRD) results indicated that films were epitaxially grown on MgO(100) without the impurity phases. The valance states of Fe and Mn in the FeMn2O4 film were carried out using x-ray photoelectron spectrometer (XPS). The magnetic properties were measured by vibrating sample magnetometer (VSM), indicating that the samples are ferromagnetic at room temperature. The structural detail and origin of magnetic ordering in FeMn2O4 will be discussed.

  • PDF

Intermediate band solar cells with ZnTe:Cr thin films grown on p-Si substrate by pulsed laser deposition

  • Lee, Kyoung Su;Oh, Gyujin;Kim, Eun Kyu
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.247.1-247.1
    • /
    • 2016
  • Low-cost, high efficiency solar cells are tremendous interests for the realization of a renewable and clean energy source. ZnTe based solar cells have a possibility of high efficiency with formation of an intermediated energy band structure by impurity doping. In this work, ZnO/ZnTe:Cr and ZnO/i-ZnTe structures were fabricated by pulsed laser deposition (PLD) technique. A pulsed (10 Hz) Nd:YAG laser operating at a wavelength of 266 nm was used to produce a plasma plume from an ablated a ZnTe target, whose density of laser energy was 10 J/cm2. The base pressure of the chamber was kept at approximately $4{\times}10-7Torr$. ZnTe:Cr and i-ZnTe thin films with thickness of 210 nm were grown on p-Si substrate, respectively, and then ZnO thin films with thickness of 150 nm were grown on ZnTe:Cr layer under oxygen partial pressure of 3 mTorr. Growth temperature of all the films was set to $250^{\circ}C$. For fabricating ZnO/i-ZnTe and ZnO/ZnTe:Cr solar cells, indium metal and Ti/Au grid patterns were deposited on back and front side of the solar cells by using thermal evaporator, respectively. From the fabricated ZnO/ZnTe:Cr and ZnO/i-ZnTe solar cell, dark currents were measured by using Keithley 2600. Solar cell parameters were obtained under Air Mass 1.5 Global solar simulator with an irradiation intensity of 100 mW/cm2, and then the photoelectric conversion efficiency values of ZnO/ZnTe:Cr and ZnO/i-ZnTe solar cells were measured at 1.5 % and 0.3 %, respectively.

  • PDF