• 제목/요약/키워드: Metal Flow

검색결과 1,279건 처리시간 0.04초

SPH 기법을 이용한 주조공정 용탕 주입 유동 해석 (Molten Metal Flow Analysis of Casting Process Using SPH Method)

  • 박병래;이상욱
    • 한국가시화정보학회지
    • /
    • 제16권1호
    • /
    • pp.54-60
    • /
    • 2018
  • It is important to develop more efficient and productive casting processes for an automated high precision molten-metal casting system. Detailed analysis of molten-metal flow in the casting process by the numerical approach will help to optimize the control of a ladle. In this study, the smoothed particle hydrodynamics method was applied to analyze casting flow characteristics with different tilting angular speed and initial molten-metal level. The smoothed particle hydrodynamics technique has advantages to easily handle non-linear free surface behavior with the absence of a computational mesh. We found that tilting angular speed has relatively greater effect on the casting flowrate and that the effect of the initial molten-metal level is only minor. Further extensive study will be necessary to find an optimal condition for high efficient casting system.

The Analysis of Liquid Metal Flow Characteristics in the Annular Passage of an Electromagnetic Pump

  • Kim, Chang-Eob;Jeon, Mun-Ho;Kwon, Jeong-Tae;Lim, Hyo-Jae;Lee, Suk-Won
    • Journal of Electrical Engineering and Technology
    • /
    • 제5권2호
    • /
    • pp.270-275
    • /
    • 2010
  • An electromagnetic pump using a tubular induction motor (TLIM) has been proposed to pump liquid metal fluids. TLIM has been designed for liquid metal flow systems with a motor with a thrust force of 40~77[N]. The flow characteristics have been investigated by solving the Navier-Stokes equation, where the Lorentz force was included simply by considering it as a constant in the Navier-Stokes equation. A wood metal was chosen to simulate the liquid metal. The effect of Lorentz force on the flow rate was investigated. An experiment was conducted and its results were compared with those of the simulation. The simulation result showed an overestimation of about 17% compared with the experimental one.

A2024 와 SM45C 마찰용접의 열전달 해석 (Heat Transfer Analysis of Friction Welding of A2024 to SM45C)

  • 이상윤;윤병수
    • 한국공작기계학회논문집
    • /
    • 제10권1호
    • /
    • pp.65-70
    • /
    • 2001
  • The hear transfer mechanism initiating the friction welding is examined and a transient three dimensional heat conduc-tion model for the welding of two dissimilar cylindrical metal bars is investigated. The cylindrical metal bars are made of materials made of A2024 and SM 45C. Numerical simulations of heat flow are performed using the finite volume method. Respectively. Commercial FLUENT code is used in the heat flow simulation and maximum temperature and distribution of temperature are calculated. Temperature of friction welded joining face is compared with the temperature distribution measured by experiment and numerical simulation. The maximum temperature of friction welded joining face is lower than melting point of A2024-T6 aluminum alloy using insert metal. The temperature distribution of friction welded join- ing face with insert metal is more uniform than that of without inset metal.

  • PDF

전자기 토모그래피를 이용한 액체 금속 속도장 측정 (Measurement of velocity Pronto in Liquid Metal Flow Using Electromagnetic Tomography)

  • 안예찬;김무환;최상호
    • 대한기계학회논문집B
    • /
    • 제28권10호
    • /
    • pp.1271-1278
    • /
    • 2004
  • In order to measure non-intrusively velocity profile in liquid metal flow, a modified electromagnetic flowmeter was designed, which was based on electromagnetic tomography technique. Under the assumption that flow is fully-developed, axisymmetric and rectilinear, the velocity profile was reconstructed after the flowmeter equation, the first kind of Fredholm integration equation, was linearized. In reconstruction process Tikhonov regularization method with regularization parameter was used. The reconstructed velocity profile had the nearly same as turbulent flow profile which was approximately represented as log law. In addition, flowmeter output fur a fixed magnet rotation angle was linearly proportional to flow rate. When magnet rotation angle was 54$^{\circ}$, axisymmetric weight function was nearly uniform so that the flowmeter gives a constant signal for any fully-developed, axisymmetric and rectilinear profile with a constant flow rate.

전자기 토모그래피를 이용한 액체 금속 속도장 측정 (Measurement of Velocity Profile in Liquid Metal Flow Using Electromagnetic Tomography)

  • 최상호;안예찬;김무환
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2004년도 춘계학술대회
    • /
    • pp.1749-1754
    • /
    • 2004
  • In order to measure non-intrusively velocity profile in liquid metal flow, a modified electromagnetic flowmeter was designed, which was based on electromagnetic tomography technique. Under the assumption that flow is fully-developed, axisymmetric and rectilinear, the velocity profile was reconstructed after the flowmeter equation, the first kind of Fredholm integration equation, was linearized. In reconstruction process Tikhonov regularization method with regularization parameter was used. The reconstructed velocity profile had the nearly same as turbulent flow profile which was approximately represented as log law. In addition, flowmeter output for a fixed magnet rotation angle was linearly proportional to flow rate. When magnet rotation angle was $54^{\circ}$, axisymmetric weight function was nearly uniform so that the flowmeter gives a constant signal for any fully-developed, axisymmetric and rectilinear profile with a constant flow rate.

  • PDF

OMACON형 LM-MHD 시스템에서의 에너지전환특성 시뮬레이션 (Simulation of Energy Conversion Characteristics of OMACON LM-MHD Systems)

  • 김창녕
    • 한국시뮬레이션학회논문지
    • /
    • 제6권2호
    • /
    • pp.1-14
    • /
    • 1997
  • The characteristics of the flow and energy conversion in OMACON liquid-metal MHD system are investigated. Numerical simulation of two-phase flow in the OMACON system without magnetic field was carried out by the Phoenics code and the energy conversion characteristics are studied in association with the fact that the mechanical energy loss at the nozzle of the OMACON system are to be converted into electrical energy. In this system, working fluid (gas) is injected through the mixer located at the bottom of the riser, and is mixed with hot liquid metal. Therefore in the riser two-phase flow is developed under the influence of the gravity. In this study, the interaction between the gas and liquid is considered by the use of IPSA(InterPhase Slip Algorithm) where standard drag coefficient has been used. It has been assumed that in the flow regime the liquid is continuous and the gas is dispersed. For the liquid and gas, the continuity equations, momentum equations and energy equations are solved respectively in association with void fraction in the flow field. In order to calculate the energy conversion efficiency, firstly the ratio of the mechanical energy loss of liquid metal flow at the nozzle to the input thermal energy is considered. Secondly flow pattern of liquid metal in the generator has been analyzed, and the characteristics of the conversion of the mechanical energy into the electrical energy has been investigated. For an representative case where Hartmann number is 540 and magnetic field is 0.35 T, the present analysis shows that the energy conversion efficiency is 0.653. This result is considered to be reasonable in comparison with published experimental results.

  • PDF

ESTABLISHMENT OF A NEURAL NETWORK MODEL FOR DETECTING A PARTIAL FLOW BLOCKAGE IN AN ASSEMBLY OF A LIQUID METAL REACTOR

  • Seong, Seung-Hwan;Jeong, Hae-Yong;Hur, Seop;Kim, Seong-O
    • Nuclear Engineering and Technology
    • /
    • 제39권1호
    • /
    • pp.43-50
    • /
    • 2007
  • A partial flow blockage in an assembly of a liquid metal reactor could result in a cooling deficiency of the core. To develop a partial blockage detection system, we have studied the changes of the temperature fluctuation characteristics in the upper plenum according to changes of the t10w blockage conditions in an assembly. We analyzed the temperature fluctuation in the upper plenum with the Large Eddy Simulation (LES) turbulence model in the CFX code and evaluated its statistical parameters. Based on the results of the statistical analyses, we developed a neural network model for detecting a partial flow blockage in an assembly. The neural network model can retrieve the size and the location of a flow blockage in an assembly from a change of the root mean square, the standard deviation, and the skewness in the temperature fluctuation data. The neural network model was found to be a possible alternative by which to identify a flow blockage in an assembly of a liquid metal reactor through learning and validating various flow blockage conditions.

금속관 내부의 음압유량 향상을 위한 기하학적 디자인 및 SLIPS 윤활 (Geometrical Design and SLIPS Lubrication for Enhancement of Negative-pressure-driven Internal Flow Rate in Metal Pipes)

  • 김동근;장창환;김성재;김대겸;김산하
    • Tribology and Lubricants
    • /
    • 제37권6호
    • /
    • pp.253-260
    • /
    • 2021
  • Metal pipes are used in a wide range of applications, from plumbing systems of large construction sites to small devices such as medical tools. When a liquid is enforced to flow through a metal pipe, a higher flow rate is beneficial for higher efficiency. Using high pressures can enhance the flow rate yet can be harmful for medical applications. Thus, we consider an optimal geometrical design to increase the flow rate in medical devices. In this study, we focus on cannulas, which are widely used small metal pipes for surgical procedures, such as liposuction. We characterize the internal flow rate driven by a negative pressure and explore its dependence on the key design parameters. We quantitatively analyze the suction characteristics for each design variable by conducting computational fluid dynamics simulations. In addition, we build a suction performance measurement system which enables the translational motion of cannulas with pre-programmed velocity for experimental validation. The inner diameter, section geometry, and hole configuration are the design factors to be evaluated. The effect of the inner diameter dominates over that of section geometry and hole configuration. In addition, the circular tube shape provides the maximum flow rate among the elliptical geometries. Once the flow rate exceeds a critical value, the rate becomes independent of the number and width of the suction holes. Finally, we introduce a slippery liquid-infused nanoporous surface (SLIPS) coating using nanoparticles and hydrophobic lubricants that effectively improves the flow rate and antifouling property of cannulas without altering the geometrical design parameter.

다공성 분리판을 적용한 고분자 전해질 연료전지의 유동 분포에 관한 전산해석 연구 (Numerical Study on Flow Distribution in PEMFC with Metal foam Bipolar Plate)

  • 송명호;김경연
    • 한국수소및신에너지학회논문집
    • /
    • 제27권1호
    • /
    • pp.29-35
    • /
    • 2016
  • It is important to uniformly supply the fuel gas into the reaction activity area in polymer electrolyte membrane fuel cell (PEMFC). Recent studies have shown that the cell performance can be significantly improved by employing metal foam gas distributor as compared with the conventional bipolar plate types. The metal foam gas distributor has been reported to be more efficient to fuel transport. In this study, three-dimensional computational fluid dynamics (CFD) simulations have been performed to examine the effects of metal foam flow field design on the fuel supply to the reaction site. Darcy's law is used for the flow in the porous media. By solving additional advection equation for fluid particle trajectory, the gas transport has been visualized and examined for various geometrical configuration of metal foam gas distributor.

공초점 현미경을 이용한 물체표면 형상측정에 관한 연구 (A Study on the Con-focal Microscope for the Surface Measurements)

  • 강영준;송대호;유원재;백성훈
    • 한국정밀공학회지
    • /
    • 제20권5호
    • /
    • pp.73-81
    • /
    • 2003
  • In case of hollow cylinder extrusion using porthole die, the effects of extrusion parameters-temperature, the speed of extrusion, the shape of the die and mandrel-on metal flow in porthole die extrusion of aluminum have been investigated. However, there have been few studies about condenser tube extruded by porthole die. Original metal flow of condenser tube by porthole die extrusion is similar to hollow cylinder extrusion but the estimation of metal flow for extrusion parameters is different. For example, variation of chamber length in hollow extrusion only affects the welding pressure, however, the welding chamber length in condenser tube extrusion influences to the welding pressure as well as the deflection of mandrel. This study was designed to evaluate metal flow, welding pressure, extrusion load, tendency of mandrel deflection according to angular variation in the bottom of chamber in porthole die. Estimation was carried out using finite element method in as non-steady state. Analytical results can provide useful information the optimal design of porthole die.