• Title/Summary/Keyword: Metal Dopping

Search Result 5, Processing Time 0.019 seconds

Fabrication of Transition Metal doped Sapphire Single Crystal by High Temperature and Pressure Acceleration Method

  • Park, Eui-Seok;Jung, Choong-Ho;Kim, Moo-Kyung;Kim, Hyung-Tae;Kim, Yoo-Taek;Hong, Jung-Yoo
    • Proceedings of the Korea Association of Crystal Growth Conference
    • /
    • 1998.09a
    • /
    • pp.97-102
    • /
    • 1998
  • Transition metal Cr3+ and Fe3+ ion was diffused in white sapphire {0001}, {1010} crystal plane which were grown by the Verneuil method. It enhanced and changed the physical, electrical and optical properties of sapphires. After mixing the metallic oxide and metal powder, it were used for diffusion. Metallic oxide was synthesized by precipitation method and it's composition was mainly alumina which doped with chromium or ferric oxide. In case using metallic oxide, the dopping was slowly progressed and it needed the longer duration time and higher temperature, relatively. Metallic powder was vapoured under 1x10-4 torr of vacuum pressure at 1900(iron metal) and 2050(chromium)℃, first step. Diffusion condition were kept by 6atm of N2 accelerating pressure at 2050∼2150℃. Each surface density of sapphire crystal are 0.225(c) and 0.1199atom/Å2(a). The color of the Cr-doped sapphires was changed to red. Dopping reaction was come out more deep in th plane of {1010} than {0001}. It was speculated that the planar density was one of the factors to determine diffusion effect.

  • PDF

Fabrication of $Cr^{3+}$ doped sapphire single crystal by high temperature and pressure acceleration method (고온가압 확산법에 의한 $Cr^{3+}$ 고용 사파이어 단결정의 제조)

  • 최의석;정충호;김무경;김형태;홍정유;김유택
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.9 no.1
    • /
    • pp.29-33
    • /
    • 1999
  • Transition metallic $Cr^{3+}$ ion was diffused in white sapphire {0001}, ${10\bar{1}0}$ crystal plane which were grown by the Verneuil, it enhanced and changed the physical, electrical and optical properties of sapphires. After mixing the metallic oxide and metal powder, it were used for diffusion powder. When it was used the mixing powder of metal and metallic oxide, the dopping was slowly progressed and it needed the longer duration time and higher temperature, relatively. Metallic powder was vapoured under $1{\times}10^{-4}$ torr of vacuum pressure at $2050^{\circ}C$, first step, it were kept by the diffusion condition of 6 atm of $N_{2}$ accelerating pressure at $2050~2150^{\circ}C$. Each surface density of sapphire crystal are 0.2254(c) and $0.1199\;atom/{\AA}^2(a)$. The color of the Cr-doped sapphires was changed to red. Dopping reaction was come out more deep in the plane of ${10\bar{1}0}$ than {0001}. It was speculated that the planar density was one of the factors to determine diffusion effect.

  • PDF

Synthesis of Metal Doped ZnO Nanoclusters by Microwave Assisted Polyol Process (마이크로웨이브 폴리올 공정에서 금속 도핑 산화아연 나노클러스터의 합성)

  • Kwon, Oh-San;Kang, Kuk-Hyoun;Lee, Dong-Kyu
    • Journal of the Korean Applied Science and Technology
    • /
    • v.31 no.3
    • /
    • pp.525-533
    • /
    • 2014
  • ZnO has attracted much attention such as photocatalysts, sensors, piezoelectricity and etc. At present, an economical and rapid synthesis route based on the efficient microwave polyol process is used to synthesized metal-doped ZnO nanoclusters. Diethylene glycol has a property of high polarizability, and is an excellent microwave absorbing agent, thus leading to a high heating rate and a significantly shorter reaction time. In this study, metal-doped ZnO nanoclusters are obtained with different seed volumes, when zinc acetate dihydrate is used as a precursor, and metal acetate hydrate is used as a doped-metal and diethylene glycol is used as a solvent. The obtained metal-doped ZnO nanoclusters were characterized by FE-SEM, XRD, Raman and PSA.

pphotoemission study of rare-earth metal(Eu) on the CdTe(110) surface

  • Kwanghyun-Cho;Oh, J.H.;Chung, J.;K.H.ppark;Oh, S.J.
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 1994.02a
    • /
    • pp.43-43
    • /
    • 1994
  • We studied chemical reactio of Eu metal on the in situ cleaved CdTe(110) surface by pphotoemission sppectroscoppy using synchrotron radiation. The chamber was maintained with base ppressure $\leq$2${\times}$10-10 mb during the expperiment. The expperiment was carried out in pphoton Factory in Jappan. Core level pphotoemission sppectroscoppy was carried out with Al K${\alpha}$ Line. The CdTe simiconductor was determined to be pp-typpe with low dopping concentration from Hall measurement. We found that there are two reacted pphases of Te with Eu (related to divalent Eu and trivalent Eu, resppectively) from least square fitting of Te 4d sppectra, but three is no indication of Cd reaction. Trivalent Eu exists after roughly one monolayer depposition (600 sec. depposition time is considered as one monolayer), which is also observed at Eu 3d core level sppectra. Overlayer Eu is metallized after roughly 2 monolayers depposition, as can be deduced from the fact that metallic edge near Fermi level begins to appear. The intensity of core-level of Te decreases expponentially at the initial stage (near one monolayer) and after one monolayer depposition it decreases more slowly due to Te out-diffusion. We categorized the growth mode of Eu on CdTe as S-K growth mode (cluster formation after one monolayer deppisition) from the relative intensity pplot of Te 4d normalized to the cleaved surface. At cleaved surface band bending is already established due to surface defects. At first 100 sec. depposition time the shift toward lower binding side by 0.6 eV is found at all core level sppectra of all elements in semiconductor. This shift is considered as the re-adjustment of surface Fermi level to the pposition induced by Eu metal (0.2 eV above the valence band maximum).

Synthesis of Ni-MWCNT by pulsed laser ablation and its water splitting properties (레이저 어블레이션 공정에 의한 Ni-MWCNT 합성 및 물분해 특성)

  • Cho, Kyoungwon;Chae, Hui Ra;Ryu, Jeong Ho
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.32 no.2
    • /
    • pp.77-82
    • /
    • 2022
  • Recently, research on the development of low-cost/high-efficiency water electrolysis catalysts to replace noble metal catalysts is being actively conducted. Since overvoltage reduces the overall efficiency of the water splitting device, lowering the overvoltage of the oxygen evolution reaction (OER) is the most important task in order to generate hydrogen more efficiently. Currently, noble metal catalysts show excellent characteristics in OER performance, but they are experiencing great difficulties in commercialization due to their high price and efficiency limitations due to low reactivity. In this study, a water electrolysis catalyst Ni-MWCNT was prepared by successfully doping Ni into the MWCNTs structure through the pulsed laser ablation in liquid (PLAL) process. High resolution-transmission electron microscopy (HR-TEM) and X-ray photoelectron spectroscopy (XPS) were performed for the structure and chemical composition of the synthesized Ni-MWCNT. Catalytic oxygen evolution reaction evaluation was performed by linear sweep voltammetry (LSV) overvoltage characteristics, Tafel slope, electrochemical impedance spectroscopy (EIS), cyclic voltammetry (CV) and Chronoamperometry (CA) was used for measurement.