• Title/Summary/Keyword: Metal Composites

Search Result 735, Processing Time 0.026 seconds

Damage detection of 3D printed mold using the surface response to excitation method

  • Tashakori, Shervin;Farhangdoust, Saman;Baghalian, Amin;McDaniel, Dwayne;Tansel, Ibrahim N.;Mehrabi, Armin
    • Structural Engineering and Mechanics
    • /
    • v.75 no.3
    • /
    • pp.369-376
    • /
    • 2020
  • The life of conventional steel plastic injection molds is long but manufacturing cost and time are prohibitive for using these molds for producing prototypes of products in limited numbers. Commonly used 3D printers and rapid prototyping methods are capable of directly converting the digital models of three-dimensional solid objects into solid physical parts. Depending on the 3D printer, the final product can be made from different material, such as polymer or metal. Rapid prototyping of parts with the polymeric material is typically cheaper, faster and convenient. However, the life of a polymer mold can be less than a hundred parts. Failure of a polymeric mold during the injection molding process can result in serious safety issues considering very large forces and temperatures are involved. In this study, the feasibility of the inspection of 3D printed molds with the surface response to excitation (SuRE) method was investigated. The SuRE method was originally developed for structural health monitoring and load monitoring in thin-walled plate-like structures. In this study, first, the SuRE method was used to evaluate if the variation of the strain could be monitored when loads were applied to the center of the 3D printed molds. After the successful results were obtained, the SuRE method was used to monitor the artifact (artificial damage) created at the 3D printed mold. The results showed that the SuRE method is a cost effective and robust approach for monitoring the condition of the 3D printed molds.

Particle Morphology via Change of Ground Particle for Various Experimental Conditions During a Grinding Process by Three Kinds of Media Mills (세 가지 매체형 분쇄기를 이용한 분쇄공정에서 다양한 실험 조건에 대한 입자형상변화)

  • Sakuragi, Shiori;Bor, Amgalan;Lee, Jehyun;Choi, Heekyu
    • Particle and aerosol research
    • /
    • v.11 no.1
    • /
    • pp.9-19
    • /
    • 2015
  • This study investigated the effects of ball mill operation condition on the morphology of raw powders in the dry-type milling process using three types of ball mills traditional ball mill, stirred ball mill and planetary ball mill. Furthermore, since spherical powders offer the best combination of high hardness and high density, the optimum milling condition to produce sphere-shaped powders was studied. The applied rotation speed ranged from 200rpm (low rotation speed) to 700rpm (high rotation speed). The used ball size ranged from 1mm to 5mm. The metal powder morphology was studied using SEM, XRD and PSA. The aimed spherical powders could be obtained under the optimum experimental conditions: traditional ball mill(200rpm, 1mm ball), planetary ball mill (500rpm, 1mm ball) and also planetary ball mill (700rpm, 1 and 3 mm ball). The results show to the development of new material using spherical type copper powder/CNT composites for air-craft and automotive applications.

Carbon nanofiber and metal oxide composites for photovoltaic cells

  • O, Dong-Hyeon;Gu, Bon-Yul;Bae, Ju-Won;An, Hyo-Jin
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.412-412
    • /
    • 2016
  • 염료감응 태양전지(dye-sensitized solar cells, DSSCs)는 식물의 광합성원리와 매우 유사한 작동원리를 갖고 있는 전지이며, 간단한 구조, 저렴한 제조단가, 친환경성 등의 등의 장점으로 인하여 많은 관심을 모으고 있다. 이러한 염료감응 태양전지는 빛을 받아들인 염료분자가 전자-홀 쌍을 생성하며 전자는 반도체 산화물을 통해 이동되고 전해질의 산화환원 과정을 통해 염료 분자가 다시 환원되는 순환메커니즘을 따르고 있다. 일반적으로 염료감응 태양전지는 밴드 갭 에너지가 큰 반도체 산화물을 포함하는 작업전극, 산화환원 반응을 통해 전자를 염료로 보내는 전해질, 환원 촉매역할을 하는 상대전극으로 구성되어 있다. 특히, 상대전극으로는 우수한 촉매특성과 높은 전도성을 갖는 백금이 가장 많이 이용되고 있지만 가격이 비싸고 요오드에 취약하기 때문에 상용화에 큰 장애물이다. 따라서, 백금을 대체하기 위해 저가의 탄소나 고분자에 대한 연구가 활발히 진행되고 있고, 그 중 탄소나노섬유(carbon nanofiber, CNFs)는 높은 표면적과 뛰어난 화학적 안정성으로 촉매효율을 증대시킬 수 있어 촉매물질로서 관심이 높아지고 있다. 본 연구에서는 상대전극에 탄소나노섬유기반 복합체를 합성하였고, 성공적으로 저가격 및 고성능의 염료감응 태양전지를 제작하였다. 이때, 지지체인 탄소나노섬유는 전기방사법을 통해 합성하였으며, 수열합성법을 이용하여 금속산화물을 담지하였다. 이렇게 제작된 탄소나노섬유-Fe2O3 복합체는 scanning electron microscopy, transmission electron microscopy, X-ray diffraction, 그리고 X-ray photoelectron spectroscopy 통해 구조적, 화학적 특성을 평가하였으며 전기화학적 특성 및 광전변환 효율을 분석하기 위해 cyclic voltammetry, electrochemical impedance spectroscopy, 그리고 solar simulator를 사용하였다. 본 학회에서 위와 관련된 더 자세한 사항에 대해 논의할 것이다.

  • PDF

Thermostability of Monolithic and Reinforced Al-Fe-V-Si Materials

  • He, Yiqiang;Qiao, Bin;Wang, Na;Yang, Jianming;Xu, Zhengkun;Chen, Zhenhua;Chen, Zhigang
    • Advanced Composite Materials
    • /
    • v.18 no.4
    • /
    • pp.339-350
    • /
    • 2009
  • Al-Fe-V-Si alloys reinforced with SiC particles were prepared by multi-layer spray deposition technique. Both microstructures and mechanical properties including hardness and tensile properties development during hot exposure process of Al-8.5Fe-1.3V-1.7Si, Al-8.5Fe-1.3V-1.7Si/15 vol% $SiC_P$ and Al-10.0Fe-1.3V-2Si/15 vol% $SiC_P$ were investigated. The experimental results showed that an amorphous interface of about 3 nm in thickness formed between SiC particles and the matrix. SiC particles injected silicon into the matrix; thus an elevated silicon concentration was found around $\alpha-Al_{12}(Fe,\;V)_3Si$ dispersoids, which subsequently inhibited the coarsening and decomposition of $\alpha-Al_{12}(Fe,\;V)_3Si$ dispersoids and enhanced the thermostability of the alloy matrix. Moreover, the thermostability of microstructure and mechanical properties of Al-10.0Fe-1.3V-2Si/15 vol% $SiC_P$ are of higher quality than those of Al-8.5Fe-1.3V-1.7Si/15 vol% $SiC_P$.

Evaluation of Fatigue Damage of Metal Matrix Composite by LFB Acoustic Microscopy (Line-Focus-Beam 초음파 현미경을 이용한 금속복합재료의 피로손상에 관한 연구)

  • Lee, Joon-Hyun
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.13 no.2
    • /
    • pp.40-47
    • /
    • 1993
  • Composites composed of a precipitation harden 2124 alloy matrix reinforced by SiC whiskers, which are fabricated by powder metallugy, are suscepttible to fatigue damage due to the pile-up of moving dislocation and the microcrack initiation along SiC-Al interfaces, especially at the external surfaces of a body. The initial process, such as pile-up of dislocation or microcrack, that corresponds to the stage I during fatigue failure process are too small to be detected and characterized by conventional ultrasonic technique. This paper describes the applicability of an acoustic microscope with Line-Focus-Beam(LFB) lens of 225MHz to evaluate fatigue damage of SiC whiskers reinforced Al alloy. The specimens which were 6.6mm thick, 13mm wide, and 105mm long in the gage section were fatigued in tension-tension under load control. The velocity of leaky surface and leaky pseudosurface acoustic waves are obtained by FFT analysis technique from V(z) curve which is a record of output of piezoelectric transducer. These results are discussed with the change of number of fatigue cycles. The result obtained by acoustic microscope is compared with that by ultrasonic technique generated at 5MHz with conventional surface wave transducers.

  • PDF

The effect of microstructure of electrical discharge machinable silicon nitride on wear resistance (방전가공용 질화규소의 미세조직이 내마모에 미치는 영향)

  • 이수완;김성호;이명호
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.8 no.1
    • /
    • pp.111-116
    • /
    • 1998
  • Silicon nitride is hard and tough ceramic material. Hereby, mechanical machinability is very poor. It has also high electrical resistance. Silicon nitride of extremely high electrical resistivity becomes conductive ceramic composite by adding 30 wt% TiN. Ceramics with high electrical conductivity can be electrical discharge machined. Using by the Electrical Discharge Machining (EDM) technique. $Si_3N_4-TiN$ ceramic composite with high electrical conductivity is utilized to make metal working tool. These tool materials have severe wear problem as well as oxidation. Post HIP processing after sintering $Si_3N_4-TiN$ ceramic composites was performed. The tribological property of $Si_3N_4-TiN$ composite as a function of content of TiN was investigated in air, at room temperature. The hardness, fracture toughness, and flexural strength were compared with the wear volume. SEM observation of wear tracks can make an explanation of wear mode of $Si_3N_4-TiN$ composite.

  • PDF

Hydrogenation Properties of $Mg_2Ni$-5mass% Nb Composites by Mechanical Alloying (기계적 합금화법으로 제조된 $Mg_2Ni$-5mass% Nb 복합재료의 수소화 특성평가)

  • Seok, Song;Yeon, Kyu-Boong;Kim, Kyoung-Il;Yoo, Sung-Woong;Cho, Young-Won;Kim, Ki-Bae;Hong, Tae-Whan
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.17 no.4
    • /
    • pp.389-394
    • /
    • 2006
  • Mg and Mg-based alloys are promising hydrogen storage alloys for renewable clean energy applications. It is a lightweight and low cost material with high hydrogen storage capacity. However, commercial applications of the Mg hydride are currently hindered by its high absorption/desorption temperature, and very slow reaction kinetics. In this work, we aim to study the absorption properties of the $Mg_2Ni$-5mass% Nb composite prepared by mechanical alloying under hydrogen. The absorption capacity of the sample is found to be about 3.0 wt.% at T=573 K and P=1.0 MPa. The absorption characteristics observed have been compared with those of the prepared $Mg_2Ni$.

Effects of Binder on the Mechanical Properties of Preform and MMCs (예비성형체 및 금속복합재료에 미치는 바인더의 영향에 관한 연구)

  • Nam, Hyun-Wook;Min, Byung-Ryoul;Lee, Jong-Hae;Han, Kyung-Seop
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.23 no.6 s.165
    • /
    • pp.952-960
    • /
    • 1999
  • The effects of binder on the mechanical properties of the preforms and metal matrix composites (MMCs) were studied. Fibers were $9Al_2O_3{\cdot}2B_2O_3(Alborex)$, HTZ and $Al_2O_3$ fibers(Saffil) and binders were organic binder, inorganic binder, polyacrylamide under various PH conditions. Compressive strength of the preform increased with the addition of inorganic binder. The polyacrylamide did not improve the permeability of the preforms. PH of the slurry should be controlled because it affects the viscosity of the slurry. Good preforms were obtained under following conditions : 3 wt% inorganic binder, 0.1 wt% organic binder, 0.1 wt% polyacrylamide and PH 9. Tensile tests of MMCs were conducted at $20^{\circ}C,\;150^{\circ}C,\;250^{\circ}C,\;350^{\circ}C$ using MTS(100KN USA). Wear tests were conducted under various sliding speeds. High temperature($250^{\circ}C$) tensile strengths of Alborex/Saffil/AC8A and HTZ/AC8A are 80% and 75% of the room temperature tensile strengths respectively. The tensile and wear properties of the Alborex/Saffil/AC8A are superior to that of the HTZ/AC8A. The wear behavior of HTZ/AC8A shows more orthotropic characteristic than that of Alborex/Saffil/AC8A.

Cobalt Oxide-Tin Oxide Composite: Polymer-Assisted Deposition and Gas Sensing Properties (PAD법으로 제작된 산화코발트-산화주석 복합체의 가스 감응 특성)

  • An, Sea-Yong;Li, Wei;Jang, Dong-Mi;Jung, Hyuck;Kim, Do-Jin
    • Korean Journal of Materials Research
    • /
    • v.20 no.11
    • /
    • pp.611-616
    • /
    • 2010
  • A cobalt oxide - tin oxide nanocomposite based gas sensor on an $SiO_2$ substrate was fabricated. Granular thin film of tin oxide was formed by a rheotaxial growth and thermal oxidation method using dc magnetron sputtering of Sn. Nano particles of cobalt oxide were spin-coated on the tin oxide. The cobalt oxide nanoparticles were synthesized by polymer-assisted deposition method, which is a simple cost-effective versatile synthesis method for various metal oxides. The thickness of the film can be controlled over a wide range of thicknesses. The composite structures thus formed were characterized in terms of morphology and gas sensing properties for reduction gas of $H_2$. The composites showed a highest response of 240% at $250^{\circ}C$ upon exposure to 4% $H_2$. This response is higher than those observed in pure $SnO_2$ (90%) and $Co_3O_4$ (70%) thin films. The improved response with the composite structure may be related to the additional formation of electrically active defects at the interfaces. The composite sensor shows a very fast response and good reproducibility.

Design and Evaluations of Underwater Hydrophone with Self Noise Suppressing Structures; - Part Ⅱ. Influence of Acostic Damping Layer Properties - (저 잡음 수중 청음기의 설계 방안 연구 - Ⅱ. 음향 감쇠층 재질의 영향 -)

  • Im, Jong-In;Roh, Young-Rae
    • The Journal of the Acoustical Society of Korea
    • /
    • v.16 no.3
    • /
    • pp.13-17
    • /
    • 1997
  • This paper investigates the influence of material properties of the acoustic damping layer in the low noise hydrophone designed in the previous paper. For increase of the insensitivity of the hydrophone to external noises, acoustic impedance and damping coefficients are selected and the effects of the selected material property on the hydrophone response to the external noises are simulated with finite element method (FEM). The results show that the damping coefficients are not influential to the structural vibration decoupling from the sensing element. On the other hand, the optimum acoustic impedance of compliant layer is estimated which is smaller than 1 Mrayl or larger than 4 Mrayl. However polymer materials, which are in general use for acoustic window and damping layers, is not appropriate for the compliant materials of this hydrophone. Therefore development of new composite materials, i.e. ceramic-polymer composite or metal-ceramic composites etc., is required for the development of effective self noise suppressing underwater hydrophones.

  • PDF