• Title/Summary/Keyword: Metal 3D printing

Search Result 131, Processing Time 0.025 seconds

Analysis of Research Trends on Electrochemical-Mechanical Planarization (전기화학-기계적 평탄화에 관한 연구 동향 분석)

  • Lee, Hyunseop;Kim, Jihun;Park, Seongmin;Chu, Dongyeop
    • Tribology and Lubricants
    • /
    • v.37 no.6
    • /
    • pp.213-223
    • /
    • 2021
  • Electrochemical mechanical planarization (ECMP) was developed to overcome the shortcomings of conventional chemical mechanical planarization (CMP). Because ECMP technology utilizes electrochemical reactions, it can have a higher efficiency than CMP even under low pressure conditions. Therefore, there is an advantage in that it is possible to reduce dicing and erosions, which are physical defects in semiconductor CMP. This paper summarizes the papers on ECMP published from 2003 to 2021 and analyzes research trends in ECMP technology. First, the material removal mechanisms and the configuration of the ECMP machine are dealt with, and then ECMP research trends are reviewed. For ECMP research trends, electrolyte, processing variables and pads, tribology, modeling, and application studies are investigated. In the past, research on ECMP was focused on basic research for the development of electrolytes, but it has recently developed into research on tribology and process variables and on new processing systems and applications. However, there is still a need to increase the processing efficiency, and to this end, the development of a hybrid ECMP processing method using another energy source is required. In addition, ECMP systems that can respond to the developing metal 3D printing technology must be researched, and ECMP equipment technology using CNC and robot technology must be developed.

Selective Laser Sintering of Co-Cr Alloy Powders and Sintered Products Properties

  • Dong-Wan Lee;Minh-Thuyet Nguyen;Jin-Chun Kim
    • Journal of Powder Materials
    • /
    • v.30 no.1
    • /
    • pp.7-12
    • /
    • 2023
  • Metal-additive manufacturing techniques, such as selective laser sintering (SLS), are increasingly utilized for new biomaterials, such as cobalt-chrome (Co-Cr). In this study, Co-Cr gas-atomized powders are used as charge materials for the SLS process. The aim is to understand the consolidation of Co-Cr alloy powder and characterization of samples sintered using SLS under various conditions. The results clearly suggest that besides the matrix phase, the second phase, which is attributed to pores and oxidation particles, is observed in the sintered specimens. The as-built samples exhibit completely different microstructural features compared with the casting or wrought products reported in the literature. The microstructure reveals melt pools, which represent the characteristics of the scanning direction, in particular, or of the SLS conditions, in general. It also exposes extremely fine grain sizes inside the melt pools, resulting in an enhancement in the hardness of the as-built products. Thus, the hardness values of the samples prepared by SLS under all parameter conditions used in this study are evidently higher than those of the casting products.

Study on Tensile Properties of AlSi10Mg produced by Selective Laser Melting (SLM 공정 기법으로 제작한 AlSi10Mg 인장특성에 관한 연구)

  • Kim, Moosun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.12
    • /
    • pp.25-31
    • /
    • 2018
  • Selective Laser Melting is one of the representative 3D printing techniques for handling metal materials. The main factors influencing the characteristics of structures fabricated by the SLM method include the build-up angle of structures, laser power, laser scan speed, and scan spacing. In this study, the tensile properties of AlSi10Mg alloys were investigated by considering the build-up angle of tensile test specimens, laser scanning speed and scan spacing as variables. The yield stress, tensile strength, and elongation were considered as tensile properties. From the test results, it was confirmed that the yield stress values were lowered in the order of 0, 45, and 90 based on the manufacturing direction of the tensile specimen. The maximum yield stress value was obtained at 1870 mm / min based on the laser scan speed. The yield stress size decreased with decreasing scan speed. Based on the laser scan spacing, as the value increases, the yield stress increases, but the variation is smaller than the other test criteria. The tendency of the tensile strength and elongation variation depending on the test conditions was difficult to understand.

Evaluation of the Usefulness of the Transmittance of Metal Filaments Fabricated by 3D Printers in Radiation Therapy (방사선 치료에서 3D 프린터로 제작된 금속 필라멘트의 투과율에 관한 유용성 평가)

  • Kwon, Kyung-Tae;Jang, Hui-Min;Yoon, Myeong-Seong
    • Journal of the Korean Society of Radiology
    • /
    • v.15 no.7
    • /
    • pp.965-973
    • /
    • 2021
  • Since radiation therapy is irradiated with high-energy X-rays in a variety of at least 20 Gy to 80 Gy, a high dose is administered to the local area where the tumor is located, and various side effects of some normal tissues are expected. Currently, in clinical practice, lead, a representative material, is used as an effort to shield normal tissues, but lead is classified as a heavy metal harmful to the human body, and a large amount of skin contact can cause poisoning. Therefore, this study intends to manufacture a measurement sheet that can compensate for the limitations of lead using the materials Tungsten, Brass, and Copper of the 3D printer of the FDM (Fused Deposition Modeling) method and to investigate the penetration performance. Tungsten mixed filament transmission measurement sheet size was 70 × 70 mm and thickness 1, 2, 4 mm using a 3D printer, and a linear accelerator (TrueBeam STx, S/N: 1187) was measured by irradiating 100 MU at SSD 100 cm and 5 cm in water using a water phantom, an ion chamber (FC-65G), and an elcetrometer (PTW UNIDOSE), and the permeability was evaluated. As a result of increasing the measurement sheet of each material by 1 mm, in the case of Tungsten sheet at 3.8 to 3.9 cm in 6 MV, the thickness of the lead shielding body was thinner than 6.5 cm, and in case of Tungsten sheet at 4.5 to 4.6 cm in 15 MV. The sheet was thinner than the existing lead shielding body thickness of 7 cm, and equivalent performance was confirmed. Through this study, the transmittance measurement sheet produced using Tungsten alloy filaments confirmed the possibility of transmission shielding in the high energy region. It has been confirmed that the usability as a substitute is also excellent. It is thought that it can be provided as basic data for the production of shielding agents with 3D printing technology in the future.

The Study on the Characteristic Sound Intensity and Frequency of Noise Exposure at Occupational Sites (산업장 소음의 강도 및 주파수 특성에 관한 조사연구)

  • Kim, Kwang Jong;Cha, Chul Whan
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.1 no.2
    • /
    • pp.181-191
    • /
    • 1991
  • The present study determined the overall noise level and the distribution of sound pressure level over audible frequency range of noise produced at various work sites. Work-related noise greater than 80dBA produced from 98 separate work sites at 37 manufacturing companies and machine shops were analysed for the overall sound level (dBA) and frequency distribution. In addition, to determine the possible hearing loss related to work site noise, a hearing test was also conducted on 1,374 workers in these work sites. The results of the study were as follows ; 1. Of the total 98 work sites, 57 work sites(58.2%) produced noise exceeding threshold limit value (${\geq}90dBA$) set by the Ministry 01 Labor. In terms of different manufacturing industries the proportion of work sites which exceeded 90dBA was the highest for the cut-stone products industry with 6/6 work sites and lowest for the commercial printing industry with 1/13 work sites. 2. The percentage of workers who were exposed to noise greater than 90dBA was 19.8% (1,040 workers) 01 the total 5,261 workers. In terms of different industries, cut-stone products industry had the most workers exposed to noise exceeding 90dBA with 82.8%, textile bleaching and dyeing industry was next at 30.6% followed by fabricated metal products industry with 27.9%, plastic products manufacturing industry had the lowest percentage of workers exposed to 90dBA exceeding noise with 4.5%. 3. There was a statistically significant correlation between the frequency of noise-induced hearing loss and the percentage of workers exposed to noise exceeding 90dBA (P<0.05). 4. The frequency analysis of noise produced at the 98 work sites revealed that 44 work sites (44.9%) had the maximum sound pressure level at high-frequencies greater than 2KHz. In addition, significantly higher sound pressure level was detected at the high-frequencies at 90dBA exceeding work sites as compared to below 90dBA work sites (P<0.01). 5. The differences in sound level meter's A-and C-weighted sound pressure levels were analysed by frequencies. Of the 28 work sites which showed 0-1 dB difference in the two weighted sound levels, 20 work sites (71.4%) had significantly higher sound pressure levels at high-frequencies greater than 2KHz (P<0.01). Furthermore, there was a tendency for higher sound pressure levels to occur in the high-frequency range as the differences in the two weighted sound levels decreased.

  • PDF

Fabrication and characteristics of alcohol sensor using Fe2O3 (Fe2O3후막을 이용한 alcohol sensor 제작 및 감응특성)

  • Lee, Y.S.;Song, K.D.;Lee, S.M.;Shim, C.H.;Choi, N.J.;Joo, B.S.;Lee, D.D.;Huh, J.S.
    • Journal of Sensor Science and Technology
    • /
    • v.11 no.2
    • /
    • pp.77-83
    • /
    • 2002
  • In order to get low cost and portability, semiconductor gas sensor need to have low operating temperature and high sensitivity. $Fe_2O_3$ based sensors which were doped with metal oxide catalysts($MoO_3$, $V_2O_5$, $TiO_2$, and CdO) were fabricated by screen printing method. To improve electrical stability of sensors, the $Fe_2O_3$ sensors were annealed in $N_2$ at $700^{\circ}C$ for 2 hours. The $V_2O_5$ doped $Fe_2O_3$ sensor showed about $80{\sim}90%$ sensitivity at alcohol 1,000 ppm and have good selectivity to hydrocarbon gas and tobacco odors. The fabricated sensor and PIC-chip were employed for portable alarm system.

Fabrication of Small SOFC Stack Based on Anode-Supported Unit Cells and Its Power Generating Characteristics (음극지지형 단전지를 사용한 소형 SOFC 스택의 제조 및 출력특성)

  • Jung, Hwa-Young;Kim, Woo-Sik;Choi, Sun-Hee;Kim, Joosun;Lee, Hae-Weon;Ko, Haengjin;Lee, Ki-Chun;Lee, Jong-Ho
    • Journal of the Korean Ceramic Society
    • /
    • v.41 no.10 s.269
    • /
    • pp.777-782
    • /
    • 2004
  • In this research, $5\times5cm^2$ unit cells were fabricated via liquid condensation process and uniaxial pressing followed by the screen printing of electrolyte and cathode layer. The SOFC stack was assembled with unit cells, gasket-type sealant and metal interconnect. The stack was designed to have a single column with internal-manifold and cross-flow type gas-channels. The SOFC stack produced 15 W, which is $50\%$ of the maximum power being expected from the maximum power density of the unit cell. Controlling factors for the proper operation of the SOFC stack and other designing factors of stack manifold and gas channels were discussed.

A study about sculpture characteristic of SKD61 tool steel fabricated by selective laser melting(SLM) process (SLM 공정으로 제작된 SKD61 공구강의 조형 특성에 관한 연구)

  • Yun, Jaecheol;Choe, Jungho;Kim, Ki-Bong;Yang, Sangsun;Yang, Dong-Yeol;Kim, Yong-Jin;Lee, Chang-Woo;Yu, Ji-Hun
    • Journal of Powder Materials
    • /
    • v.25 no.2
    • /
    • pp.137-143
    • /
    • 2018
  • In this study, two types of SKD61 tool-steel samples are built by a selective laser melting (SLM) process using the different laser scan speeds. The characteristics of two kinds of SKD61 tool-steel powders used in the SLM process are evaluated. Commercial SKD61 tool-steel power has a flowability of 16.68 sec/50 g and its Hausner ratio is calculated to be 1.25 by apparent and tapped density. Also, the fabricated SKD61 tool steel powder fabricated by a gas atomization process has a flowability of 21.3 sec/50 g and its Hausner ratio is calculated to be 1.18. Therefore, we confirmed that the two powders used in this study have excellent flowability. Samples are fabricated to measure mechanical properties. The highest densities of the SKD61 tool-steel samples, fabricated under the same conditions, are $7.734g/cm^3$ (using commercial SKD61 powder) and $7.652g/cm^3$ (using fabricated SKD61 powder), measured with Archimedes method. Hardness is measured by Rockwell hardness testing equipment 5 times and the highest hardnesses of the samples are 54.56 HRC (commercial powder) and 52.62 HRC (fabricated powder). Also, the measured tensile strengths are approximately 1,721 MPa (commercial SKD61 powder) and 1,552 MPa (fabricated SKD61 powder), respectively.

Heat Dissipation Trends in Semiconductors and Electronic Packaging (반도체 및 전자패키지의 방열기술 동향)

  • S.H. Moon;K.S. Choi;Y.S. Eom;H.G. Yun;J.H. Joo;G.M. Choi;J.H. Shin
    • Electronics and Telecommunications Trends
    • /
    • v.38 no.6
    • /
    • pp.41-51
    • /
    • 2023
  • Heat dissipation technology for semiconductors and electronic packaging has a substantial impact on performance and lifespan, but efficient heat dissipation is currently facing limited improvement. Owing to the high integration density in electronic packaging, heat dissipation components must become thinner and increase their performance. Therefore, heat dissipation materials are being devised considering conductive heat transfer, carbon-based directional thermal conductivity improvements, functional heat dissipation composite materials with added fillers, and liquid-metal thermal interface materials. Additionally, in heat dissipation structure design, 3D printing-based complex heat dissipation fins, packages that expand the heat dissipation area, chip embedded structures that minimize contact thermal resistance, differential scanning calorimetry structures, and through-silicon-via technologies and their replacement technologies are being actively developed. Regarding dry cooling using single-phase and phase-change heat transfer, technologies for improving the vapor chamber performance and structural diversification are being investigated along with the miniaturization of heat pipes and high-performance capillary wicks. Meanwhile, in wet cooling with high heat flux, technologies for designing and manufacturing miniaturized flow paths, heat dissipating materials within flow paths, increasing heat dissipation area, and reducing pressure drops are being developed. We also analyze the development of direct cooling and immersion cooling technologies, which are gradually expanding to achieve near-junction cooling.

A study on the effects of polymer core gate sizes on thickness shrinkage rate (폴리머코어 게이트 크기 변화가 두께 방향 수축률에 미치는 영향에 대한 연구)

  • Choi, Han-Sol;Jeong, Eui-Chul;Park, Jun-Soo;Kim, Mi-Ae;Chae, Bo-Hye;Kim, Sang-Yun;Kim, Yong-Dae;Yoon, Kyung-Hwan;Lee, Sung-Hee
    • Design & Manufacturing
    • /
    • v.14 no.1
    • /
    • pp.1-7
    • /
    • 2020
  • In this study, the variation of the shrinkage in the thickness direction of the molded parts according to the gate size of the polymer core fabricated through the 3D printer using the SLS method was studied. The polymer cores are laser sintered and the powder material is nylon base PA2200. The polymer cores have lower heat transfer rate and rigidity than the metal core due to the characteristics of the material. Therefore, the injection molding test conditions are set to minimize the deformation of the core during the injection process. The resin used in the injection molding test is a PP material. The packing condition was set to 80, 90 and 100% of the maximum injection pressure for each gate size. The runner diameter used was ∅3mm, and the gates were fabricated in semicircle shapes with cross sections 1, 2, and 3 ㎟, respectively. Thickness measurement was performed for 10 points at 2.5 mm intervals from the point 2.5 mm away from the gate, and the shrinkage to thickness was measured for each point. The shrinkage rate according to the gate size tends to decrease as the cross-sectional area decreases as the maximum injection pressure increases. The average thickness shrinkage rate was close to 0% when the packing pressure was 90% for the gate area of 1mm2. When the holding pressure was set to 100%, the shrinkage was found to decrease by 3% from the standard dimension due to the over-packing phenomenon. Therefore, the smaller the gate, the more closely the molded dimensions can be molded due to the high pressure generation. It was confirmed that precise packing process control is necessary because over-packing phenomenon may occur.