• Title/Summary/Keyword: Metaheuristic Algorithm

Search Result 148, Processing Time 0.026 seconds

A Cellular Formation Problem Algorithm Based on Frequency of Used Machine for Cellular Manufacturing System

  • Lee, Sang-Un
    • Journal of the Korea Society of Computer and Information
    • /
    • v.21 no.2
    • /
    • pp.71-77
    • /
    • 2016
  • There has been unknown polynomial time algorithm for cellular formation problem (CFP) that is one of the NP-hard problem. Therefore metaheuristic method has been applied this problem to obtain approximated solution. This paper shows the existence of polynomial-time heuristic algorithm in CFP. The proposed algorithm performs coarse-grained and fine-grained cell formation process. In coarse-grained cell formation process, the cell can be formed in accordance with machine frequently used that is the number of other products use same machine with special product. As a result, the machine can be assigned to most used cell. In fine-grained process, the product and machine are moved into other cell that has a improved grouping efficiency. For 35 experimental data, this heuristic algorithm performs better grouping efficiency for 12 data than best known of meta-heuristic methods.

Partial Transmit Sequence Optimization Using Improved Harmony Search Algorithm for PAPR Reduction in OFDM

  • Singh, Mangal;Patra, Sarat Kumar
    • ETRI Journal
    • /
    • v.39 no.6
    • /
    • pp.782-793
    • /
    • 2017
  • This paper considers the use of the Partial Transmit Sequence (PTS) technique to reduce the Peak-to-Average Power Ratio (PAPR) of an Orthogonal Frequency Division Multiplexing signal in wireless communication systems. Search complexity is very high in the traditional PTS scheme because it involves an extensive random search over all combinations of allowed phase vectors, and it increases exponentially with the number of phase vectors. In this paper, a suboptimal metaheuristic algorithm for phase optimization based on an improved harmony search (IHS) is applied to explore the optimal combination of phase vectors that provides improved performance compared with existing evolutionary algorithms such as the harmony search algorithm and firefly algorithm. IHS enhances the accuracy and convergence rate of the conventional algorithms with very few parameters to adjust. Simulation results show that an improved harmony search-based PTS algorithm can achieve a significant reduction in PAPR using a simple network structure compared with conventional algorithms.

Modification of ground motions using wavelet transform and VPS algorithm

  • Kaveh, A.;Mahdavi, V.R.
    • Earthquakes and Structures
    • /
    • v.12 no.4
    • /
    • pp.389-395
    • /
    • 2017
  • In this paper a simple approach is presented for spectral matching of ground motions utilizing the wavelet transform and a recently developed metaheuristic optimization technique. For this purpose, wavelet transform is used to decompose the original ground motions to several levels, where each level covers a special range of frequency, and then each level is multiplied by a variable. Subsequently, the vibrating particles system (VPS) algorithm is employed to calculate the variables such that the error between the response and target spectra is minimized. The application of the proposed method is illustrated through modifying 12 sets of ground motions. The results achieved by this method demonstrate its capability in solving the problem. The outcomes of the VPS algorithm are compared to those of the standard colliding bodies optimization (CBO) to illustrate the importance of the enhancement of the algorithm.

Sintering process optimization of ZnO varistor materials by machine learning based metamodel (기계학습 기반의 메타모델을 활용한 ZnO 바리스터 소결 공정 최적화 연구)

  • Kim, Boyeol;Seo, Ga Won;Ha, Manjin;Hong, Youn-Woo;Chung, Chan-Yeup
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.31 no.6
    • /
    • pp.258-263
    • /
    • 2021
  • ZnO varistor is a semiconductor device which can serve to protect the circuit from surge voltage because its non-linear I-V characteristics by controlling the microstructure of grain and grain boundaries. In order to obtain desired electrical properties, it is important to control microstructure evolution during the sintering process. In this research, we defined a dataset composed of process conditions of sintering and relative permittivity of sintered body, and collected experimental dataset with DOE. Meta-models can predict permittivity were developed by learning the collected experimental dataset on various machine learning algorithms. By utilizing the meta-model, we can derive optimized sintering conditions that could show the maximum permittivity from the numerical-based HMA (Hybrid Metaheuristic Algorithm) optimization algorithm. It is possible to search the optimal process conditions with minimum number of experiments if meta-model-based optimization is applied to ceramic processing.

State of the Art Technology Trends and Case Analysis of Leading Research in Harmony Search Algorithm (하모니 탐색 알고리즘의 선도 연구에 관한 최첨단 기술 동향과 사례 분석)

  • Kim, Eun-Sung;Shin, Seung-Soo;Kim, Yong-Hyuk;Yoon, Yourim
    • Journal of the Korea Convergence Society
    • /
    • v.12 no.11
    • /
    • pp.81-90
    • /
    • 2021
  • There are various optimization problems in real world and research continues to solve them. An optimization problem is the problem of finding a combination of parameters that maximizes or minimizes the objective function. Harmony search is a population-based metaheuristic algorithm for solving optimization problems and it is designed to mimic the improvisation of jazz music. Harmony search has been actively applied to optimization problems in various fields such as civil engineering, computer science, energy, medical science, and water quality engineering. Harmony search has a simple working principle and it has the advantage of finding good solutions quickly in constrained optimization problems. Especially there are various application cases showing high accuracy with a low number of iterations by improving the solution through the empirical derivative. In this paper, we explain working principle of Harmony search and classify the leading research in recent 3 years, review them according to category, and suggest future research directions. The research is divided into review by field, algorithmic analysis and theory, and application to real world problems. Application to real world problems is classified according to the purpose of optimization and whether or not they are hybridized with other metaheuristic algorithms.

An improved particle swarm optimizer for steel grillage systems

  • Erdal, Ferhat;Dogan, Erkan;Saka, Mehmet Polat
    • Structural Engineering and Mechanics
    • /
    • v.47 no.4
    • /
    • pp.513-530
    • /
    • 2013
  • In this paper, an improved version of particle swarm optimization based optimum design algorithm (IPSO) is presented for the steel grillage systems. The optimum design problem is formulated considering the provisions of American Institute of Steel Construction concerning Load and Resistance Factor Design. The optimum design algorithm selects the appropriate W-sections for the beams of the grillage system such that the design constraints are satisfied and the grillage weight is the minimum. When an improved version of the technique is extended to be implemented, the related results and convergence performance prove to be better than the simple particle swarm optimization algorithm and some other metaheuristic optimization techniques. The efficiency of different inertia weight parameters of the proposed algorithm is also numerically investigated considering a number of numerical grillage system examples.

A Study on Wireless LAN Topology Configuration for Enhancing Indoor Location-awareness and Network Performance (실내 위치 인식 및 네트워크 성능 향상을 고려한 무선 랜 토폴로지 구성 방안에 관한 연구)

  • Kim, Taehoon;Tak, Sungwoo
    • Journal of Korea Multimedia Society
    • /
    • v.16 no.4
    • /
    • pp.472-482
    • /
    • 2013
  • This paper proposes a wireless LAN topology configuration method for enhancing indoor location-awareness and improving network performance simultaneously. We first develop four objective functions that yield objective goals significant to the optimal design of a wireless LAN topology in terms of location-awareness accuracy and network performance factors. Then, we develop metaheuristic algorithms such as simulated annealing, tabu search, and genetic algorithm that examine the proposed objective functions and generate a near-optimal solution for a given objective function. Finally, four objective functions and metaheuristic algorithms developed in this paper are exploited to evaluate and measure the performance of the proposed wireless LAN topology configuration method.

Optimum tuned mass damper design for preventing brittle fracture of RC buildings

  • Nigdeli, Sinan Melih;Bekdas, Gebrail
    • Smart Structures and Systems
    • /
    • v.12 no.2
    • /
    • pp.137-155
    • /
    • 2013
  • Brittle fracture of structures excited by earthquakes can be prevented by adding a tuned mass damper (TMD). This TMD must be optimum and suitable to the physical conditions of the structure. Compressive strength of concrete is an important factor for brittle fracture. The application of a TMD to structures with low compressive strength of concrete may not be possible if the weight of the TMD is too much. A heavy TMD is dangerous for these structures because of insufficient axial force capacity of structure. For the preventing brittle fracture, the damping ratio of the TMD must be sufficient to reduce maximum shear forces below the values proposed in design regulations. Using the formulas for frequency and damping ratio related to a preselected mass, this objective can be only achieved by increasing the mass of the TMD. By using a metaheuristic method, the optimum parameters can be searched in a specific limit. In this study, Harmony Search (HS) is employed to find optimum TMD parameters for preventing brittle fracture by reducing shear force in additional to other time and frequency responses. The proposed method is feasible for the retrofit of weak structures with insufficient compressive strength of concrete.

Predicting the splitting tensile strength of concrete using an equilibrium optimization model

  • Zhao, Yinghao;Zhong, Xiaolin;Foong, Loke Kok
    • Steel and Composite Structures
    • /
    • v.39 no.1
    • /
    • pp.81-93
    • /
    • 2021
  • Splitting tensile strength (STS) is an important mechanical parameter of concrete. This study offers novel methodologies for the early prediction of this parameter. Artificial neural network (ANN), which is a leading predictive method, is synthesized with two metaheuristic algorithms, namely atom search optimization (ASO) and equilibrium optimizer (EO) to achieve an optimal tuning of the weights and biases. The models are applied to data collected from the published literature. The sensitivity of the ASO and EO to the population size is first investigated, and then, proper configurations of the ASO-NN and EO-NN are compared to the conventional ANN. Evaluating the prediction results revealed the excellent efficiency of EO in optimizing the ANN. Accuracy improvements attained by this algorithm were 13.26 and 11.41% in terms of root mean square error and mean absolute error, respectively. Moreover, it raised the correlation from 0.89958 to 0.92722. This is while the results of the conventional ANN were slightly better than ASO-NN. The EO was also a faster optimizer than ASO. Based on these findings, the combination of the ANN and EO can be an efficient non-destructive tool for predicting the STS.

Novel integrative soft computing for daily pan evaporation modeling

  • Zhang, Yu;Liu, LiLi;Zhu, Yongjun;Wang, Peng;Foong, Loke Kok
    • Smart Structures and Systems
    • /
    • v.30 no.4
    • /
    • pp.421-432
    • /
    • 2022
  • Regarding the high significance of correct pan evaporation modeling, this study introduces two novel neuro-metaheuristic approaches to improve the accuracy of prediction for this parameter. Vortex search algorithms (VSA), sunflower optimization (SFO), and stochastic fractal search (SFS) are integrated with a multilayer perceptron neural network to create the VSA-MLPNN, SFO-MLPNN, and SFS-MLPNN hybrids. The climate data of Arcata-Eureka station (operated by the US environmental protection agency) belonging to the years 1986-1989 and the year 1990 are used for training and testing the models, respectively. Trying different configurations revealed that the best performance of the VSA, SFO, and SFS is obtained for the population size of 400, 300, and 100, respectively. The results were compared with a conventionally trained MLPNN to examine the effect of the metaheuristic algorithms. Overall, all four models presented a very reliable simulation. However, the SFS-MLPNN (mean absolute error, MAE = 0.0997 and Pearson correlation coefficient, RP = 0.9957) was the most accurate model, followed by the VSA-MLPNN (MAE = 0.1058 and RP = 0.9945), conventional MLPNN (MAE = 0.1062 and RP = 0.9944), and SFO-MLPNN (MAE = 0.1305 and RP = 0.9914). The findings indicated that employing the VSA and SFS results in improving the accuracy of the neural network in the prediction of pan evaporation. Hence, the suggested models are recommended for future practical applications.