• Title/Summary/Keyword: Metaheuristic

Search Result 178, Processing Time 0.023 seconds

NoC-Based SoC Test Scheduling Using Ant Colony Optimization

  • Ahn, Jin-Ho;Kang, Sung-Ho
    • ETRI Journal
    • /
    • v.30 no.1
    • /
    • pp.129-140
    • /
    • 2008
  • In this paper, we propose a novel ant colony optimization (ACO)-based test scheduling method for testing network-on-chip (NoC)-based systems-on-chip (SoCs), on the assumption that the test platform, including specific methods and configurations such as test packet routing, generation, and absorption, is installed. The ACO metaheuristic model, inspired by the ant's foraging behavior, can autonomously find better results by exploring more solution space. The proposed method efficiently combines the rectangle packing method with ACO and improves the scheduling results by dynamically choosing the test-access-mechanism widths for cores and changing the testing orders. The power dissipation and variable test clock mode are also considered. Experimental results using ITC'02 benchmark circuits show that the proposed algorithm can efficiently reduce overall test time. Moreover, the computation time of the algorithm is less than a few seconds in most cases.

  • PDF

The Variable Amplitude Coefficient Fireworks Algorithm with Uniform Local Search Operator

  • Li, Lixian;Lee, Jaewan
    • Journal of Internet Computing and Services
    • /
    • v.21 no.3
    • /
    • pp.21-28
    • /
    • 2020
  • Fireworks Algorithm (FWA) is a relatively novel swarm-based metaheuristic algorithm for global optimization. To solve the low-efficient local searching problem and convergence of the FWA, this paper presents a Variable Amplitude Coefficient Fireworks Algorithm with Uniform Local Search Operator (namely VACUFWA). Firstly, the explosive amplitude is used to adjust improving the convergence speed dynamically. Secondly, Uniform Local Search (ULS) enhances exploitation capability of the FWA. Finally, the ULS and Variable Amplitude Coefficient operator are used in the VACUFWA. The comprehensive experiment carried out on 13 benchmark functions. Its results indicate that the performance of VACUFWA is significantly improved compared with the FWA, Differential Evolution, and Particle Swarm Optimization.

Economic Dispatch Using Hybrid Particle Swarm Optimization with Prohibited Operating Zones and Ramp Rate Limit Constraints

  • Prabakaran, S.;Senthilkuma, V.;Baskar, G.
    • Journal of Electrical Engineering and Technology
    • /
    • v.10 no.4
    • /
    • pp.1441-1452
    • /
    • 2015
  • This paper proposes a new Hybrid Particle Swarm Optimization (HPSO) method that integrates the Evolutionary Programming (EP) and Particle Swarm Optimization (PSO) techniques. The proposed method is applied to solve Economic Dispatch(ED) problems considering prohibited operating zones, ramp rate limits, capacity limits and power balance constraints. In the proposed HPSO method, the best features of both EP and PSO are exploited, and it is capable of finding the most optimal solution for the non-linear optimization problems. For validating the proposed method, it has been tested on the standard three, six, fifteen and twenty unit test systems. The numerical results show that the proposed HPSO method is well suitable for solving non-linear economic dispatch problems, and it outperforms the EP, PSO and other modern metaheuristic optimization methods reported in the recent literatures.

A Vehicle Routing Problem with Double-Trip and Multiple Depots by using Modified Genetic Algorithm (수정 유전자 알고리듬을 이용한 중복방문, 다중차고 차량경로문제)

  • Jeon, Geon-Wook;Shim, Jae-Young
    • IE interfaces
    • /
    • v.17 no.spc
    • /
    • pp.28-36
    • /
    • 2004
  • The main purpose of this study is to find out the optimal solution of the vehicle routing problem considering heterogeneous vehicle(s), double-trips, and multi depots. This study suggests a mathematical programming model with new numerical formula which considers the amount of delivery and sub-tour elimination and gives optimal solution by using OPL-STUDIO(ILOG). This study also suggests modified genetic algorithm which considers the improvement of the creation method for initial solution, application of demanding point, individual and last learning method in order to find excellent solution, survival probability of infeasible solution for allowance, and floating mutation rate for escaping from local solution. The suggested modified genetic algorithm is compared with optimal solution of the existing problems. We found the better solution rather than the existing genetic algorithm. The suggested modified genetic algorithm is tested by Eilon and Fisher data(Eilon 22, Eilon 23, Eilon 30, Eilon 33, and Fisher 10), respectively.

Optimum design of steel space structures using social spider optimization algorithm with spider jump technique

  • Aydogdu, Ibrahim;Efe, Perihan;Yetkin, Metin;Akin, Alper
    • Structural Engineering and Mechanics
    • /
    • v.62 no.3
    • /
    • pp.259-272
    • /
    • 2017
  • In this study, recently developed swarm intelligence algorithm called Social Spider Optimization (SSO) approach and its enhanced version of SSO algorithm with spider jump techniques is used to develop a structural optimization technique for steel space structures. The improved version of SSO uses adaptive randomness probability in generating new solutions. The objective function of the design optimization problem is taken as the weight of a steel space structure. Constraints' functions are implemented from American Institute of Steel Construction-Load Resistance factor design (AISC-LRFD) and Ad Hoc Committee report and practice which cover strength, serviceability and geometric requirements. Three steel space structures are optimized using both standard SSO and SSO with spider jump (SSO_SJ) algorithms and the results are compared with those available in the literature in order to investigate the performance of the proposed algorithms.

An efficient multi-objective cuckoo search algorithm for design optimization

  • Kaveh, A.;Bakhshpoori, T.
    • Advances in Computational Design
    • /
    • v.1 no.1
    • /
    • pp.87-103
    • /
    • 2016
  • This paper adopts and investigates the non-dominated sorting approach for extending the single-objective Cuckoo Search (CS) into a multi-objective framework. The proposed approach uses an archive composed of primary and secondary population to select and keep the non-dominated solutions at each generation instead of pairwise analogy used in the original Multi-objective Cuckoo Search (MOCS). Our simulations show that such a low computational complexity approach can enrich CS to incorporate multi-objective needs instead of considering multiple eggs for cuckoos used in the original MOCS. The proposed MOCS is tested on a set of multi-objective optimization problems and two well-studied engineering design optimization problems. Compared to MOCS and some other available multi-objective algorithms such as NSGA-II, our approach is found to be competitive while benefiting simplicity. Moreover, the proposed approach is simpler and is capable of finding a wide spread of solutions with good coverage and convergence to true Pareto optimal fronts.

Risk assessment of steel and steel-concrete composite 3D buildings considering sources of uncertainty

  • Lagaros, Nikos D.
    • Earthquakes and Structures
    • /
    • v.6 no.1
    • /
    • pp.19-43
    • /
    • 2014
  • A risk assessment framework for evaluating building structures is implemented in this study. This framework allows considering sources of uncertainty both on structural capacity and seismic demand. In particular randomness on seismic load, incident angle, material properties, floor mass and structural damping are considered; in addition the choice of fibre modelling versus plastic hinge model is also considered as a source of uncertainty. The main objective of this work is to study the contribution of these sources of uncertainty on the fragilities of steel and steel-reinforced concrete composite 3D building structures. The fragility curves are expressed in the form of a two-parameter lognormal distribution where vertical statistics in conjunction with metaheuristic optimization are implemented for calculating the two parameters.

Machine Layout Decision Algorithm for Cellular Formation Problem

  • Lee, Sang-Un
    • Journal of the Korea Society of Computer and Information
    • /
    • v.21 no.4
    • /
    • pp.47-54
    • /
    • 2016
  • Cellular formation and layout problem has been known as a NP-hard problem. Because of the algorithm that can be solved exact solution within polynomial time has been unknown yet. This paper suggests a systematic method to be obtain of 2-degree partial directed path from the frequency of consecutive forward order. We apply the modified Kruskal algorithm of minimum spanning tree to be obtain the partial directed path. the proposed reverse constructive algorithm can be solved for this problem with O(mn) time complexity. This algorithm performs same as best known result of heuristic and metaheuristic methods for 4 experimental data.

Optimum design of geometrically non-linear steel frames with semi-rigid connections using a harmony search algorithm

  • Degertekin, S.O.;Hayalioglu, M.S.;Gorgun, H.
    • Steel and Composite Structures
    • /
    • v.9 no.6
    • /
    • pp.535-555
    • /
    • 2009
  • The harmony search method based optimum design algorithm is presented for geometrically non-linear semi-rigid steel frames. Harmony search method is recently developed metaheuristic algorithm which simulates the process of producing a musical performance. The optimum design algorithm aims at obtaining minimum weight steel frames by selecting from standard set of steel sections such as European wide flange beams (HE sections). Strength constraints of Turkish Building Code for Steel Structures (TS648) specification and displacement constraints were used in the optimum design formulation. The optimum design algorithm takes into account both the geometric non-linearity of the frame members and the semi-rigid behaviour of the beam-to-column connections. The Frye-Morris polynomial model is used to calculate the moment-rotation relation of beam-to-column connections. The robustness of harmony search algorithm, in comparison with genetic algorithms, is verified with two benchmark examples. The comparisons revealed that the harmony search algorithm yielded not only minimum weight steel frames but also required less computational effort for the presented examples.

Effect of Reconfiguration and Capacitor Placement on Power Loss Reduction and Voltage Profile Improvement

  • Hosseinnia, Hamed;Farsadi, Murteza
    • Transactions on Electrical and Electronic Materials
    • /
    • v.18 no.6
    • /
    • pp.345-349
    • /
    • 2017
  • Reconfiguration is an important method to minimize power loss and load interruption by creating an optimal configuration of a system. Furthermore, by increasing demand and value of consumption, construction of new power plants can be postponed in networks by reconfiguration and proper arrangement of linkage switches. This method is feasible for radial networks, which create meshes of linkage switches. One convenient way to achieve a system with minimal power loss and interruption is to utilize capacitors. Optimal placement and sizing of capacitors in such applications is an important issue in the literature. In this paper, cat swarm optimization is introduced as a new metaheuristic algorithm to achieve this purpose. Simulation has been carried out in two feasible networks, 69-bus and 33-bus systems.