• Title/Summary/Keyword: Metabolism Induction

Search Result 235, Processing Time 0.023 seconds

Expression and Activation of Akt/PKB Protein Kinase using Escherichia coli (대장균을 이용한 Akt/PKB Protein Kinase의 발현 및 활성화)

  • Lee, Jae-Hag
    • Microbiology and Biotechnology Letters
    • /
    • v.37 no.2
    • /
    • pp.105-109
    • /
    • 2009
  • Among signal transduction systems by protein phosphorylation Akt/PKB protein kinase which is one of serine/threonine kinases, is known to regulate the survival and death of the cell and glucose metabolism. Thus, Akt/PKB protein kinase has been used as one of the target proteins to find anti-cancer agents from natural products. In this study, human Akt/PKB protein kinase was expressed in Escherichia coli expression system for the mass production. Human Akt/PKB protein kinase expressed in E. coli formed inclusion body under the general condition. However, most of the expressed protein was solubilized under the culture temperature at $27^{\circ}C$ and 0.01-0.09 mM of IPTG for induction of the protein expression. The expressed protein was purified using $Ni^{2+}$-NTA agarose column and confirmed by using anti-Akt antibody. Subsequently, the purified human Akt/PKB protein kinase was activated by in vitro phosphorylation using cellular extract containing kinases. The activated protein was confirmed to phosphorylate the specific fluorescent peptide specially designed as the artificial substrate for Akt/PKB protein kinase.

Modulation of Biotransformation Enzymes by Phytochemicals: Impact of Genotypes

  • Lampe Johanna W.
    • Proceedings of the Korean Society of Food Science and Nutrition Conference
    • /
    • 2004.11a
    • /
    • pp.65-70
    • /
    • 2004
  • Modulation of biotransformation enzymes is one mechanism by which a diet high in fruits and vegetable may influence cancer risk. Inhibition of cytochrome P450s (CYP) and concomitant induction of conjugating enzymes are hypothesized to reduce the impact of carcinogens in humans. Thus, exposure to types and amounts of phytochemicals may influence disease risk. Like other xenobiotics, many classes of phytochemicals are rapodly conjugated with glutathione, glucuronide, and sulfate moieties and excreted in urine and bile. In humans, circulating phytochemical levels very widely among individuals even in response to controlled dietary interventions. Polymorphisms in biotransformation enzymes, such as the glutathione S-transferases (GST), UDP-glucuronosyltransferases (UGT), and sulfotransferases (SULT), may ocntribute to the variability in phytochemical clearance and efficacy; polymorphic enzymes with lower enzyme activity prolong the half-lives of phytochmicals in vivo. Isothiocyanates (ITC) in cruciferous vegetables are catalyzed by the four major human GSTs: however reaction velocities of the enzymes differ greatly. In some observational studies of cancer, polymorphisms in the GSTMI and GSTTI genes that result in complete lack of GSTM1-1 protein, respectively, confer greater protection from cruciferous vegetable in individuals with these genotypes. Similarly, we have shown in a controlled dietary trial that levels of GST-alpha-induced by ITC-are higher in GSTMI-null individuals exposed to cruciferous vegetablse. The selectivity of glucuronosyl conjugation of flavonoids is dependent both on flavonoid structure as well as on the UGI isozyme involved in its conjuagtion. The effects of UGI polymorphisms on flavonoid clearnace have not been examind; but polymorphisms affect glucuronidation of several drugs. Given the strong interest in the chemopreventive effects of flavonoids, systematic evaluation of these polymorphic UGTs and flavonoid pharmacokinetics are warranted. Overall, these studies suggest that for phytochemicals that are metabolized by, and affect activity of, biotransformation enzymes, interactions between genetic polymorphisms in the enzymes and intake of the compounds should be considered in studies of cancer risk. Genetic polymorphisms in biotransformation enzymes may account in prat for individual variation in metabolism of a wide range of phytochemicals and their ultimate impact on health.

  • PDF

Inductive Effect of Scutellariae radix on Glutathione S-Transferase Yc1/2 from Rat Liver (황금이 백서의 간 조직 글루타치온 에스-전이 효고 Ycl/2의 발현 효과)

  • Kim Young Sook;Kim Dong Hyun;Choi Mi Jung;Kim Sung Min;Park Rae Kil;Kwon Kang Beom;Ryu Do Gon;Kim Bok Ryang
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.17 no.6
    • /
    • pp.1448-1452
    • /
    • 2003
  • The water extract of Scutellariae radix was treated to rat and the primary culture of hepatocytes, and the expressions of several glutathione S-transferase (GST) isozymes and the activity of GST Yc1/2 were investigated by Western blot and by the use of HPLC. The results were obtained as follows: The water extract of Scutellariae radix did not induce the expressions of cytosolic GST Ya and GST Yp in rat livers. But, the extract increased the expression of cytosolic GST Yc1/2 to 2-4 fold higher than control. The expression of GST Yc1/2 in the primary culture of rat hepatocytes was induced by the water extract of Scutellariae radix in a dose-dependent manner, reaching 21-fold over control with 50 ㎍/㎖ treatment. The induction of the expression of GST Yc1/2 in rat livers increased the formation of AFB₁-glutathione conjugate from AFB₁-8,9-epoxide which was made in the metabolism of AFB₁.

Identification and Characterization of an Oil-degrading Yeast, Yarrowia lipolytica 180

  • Kim, Tae-Hyun;Lee, Jung-Hyun;Oh, Young-Sook;Bae, Kyung-Sook;Kim, Sang-Jin
    • Journal of Microbiology
    • /
    • v.37 no.3
    • /
    • pp.128-135
    • /
    • 1999
  • Among oil-degrading microorganisms isolated from oil-polluted industrial areas, one yeast strain showed high degradation activity of aliphatic hydrocarbons. From the analyses of 18S rRNA sequences, fatty acid, coenzyme Q system, G+C content of DNA, and biochemical characteristics, the strain was identified as Yarrowia lipolytica 180. Y. lipolytica 180 degraded 94% of aliphatic hydrocarbons in minimal salts medium containing 0.2% (v/v) of Arabian light crude oil within 3 days at 25$^{\circ}C$. Optimal growth conditions for temperature, pH, NaCl concentration, and crude oil concentration were 30$^{\circ}C$, pH 5-7, 1%, and 2% (v/v), respectively. Y. lipolytica 180 reduced surface tension when cultured on hydrocarbon substrates (1%, v/v), and the measured values of the surface tension were in the range of 51 to 57 dynes/cm. Both the cell free culture broth and cell debris of Y. lipolytica 180 were capable of emulsifying 2% (v/v) crude oil by itself. They were also capable of degrading crude oil (2%). The strain showed a cell surface hydrophobicity higher than 90%, which did not require hydrocarbon substrates for its induction. These results suggest that Y. lipolytica has high oil-degrading activity through its high emulsifying activity and cell hydrophobicity, and further indicate that the cell surface is responsible for the metabolism of aliphatic hydrocarbons.

  • PDF

Evience that a Plasmid Endoces Genes for Metabolism of Malonte in Pseudomonas fluorescens (Pseudomonas fluorescens에 있는 하나의 Plasmid가 말론산 대사에 관련된 유전자를 가지고 있다는 증거)

  • Kim, Yu-Sam;Kim, Eun-Joo
    • Korean Journal of Microbiology
    • /
    • v.32 no.3
    • /
    • pp.192-197
    • /
    • 1994
  • Pseudomonas fluorescens which is able to utilize malonate as a sole carbon source was found to contain a novel 60 kb plasmid, which encodes the genes for the proteins to assimilate malonate, including malonate decarboxylase and acetyl-CoA synthetase. The evidence is as follows: The Pseudomonas cured with mitomycin C was unable to grow on malonate-medium as well as it lost plasmid. The plasmid isolated from the Pseudomonas could be introduced into E. coli strain JM103 and DH1 by transformation. The transformed E. coli was able to grow on malonate-medium and could transmit its plasmid back to the cured P. fluorescens by conjugation. The existence of the plasmid in the transformed E. coli was confirmed by hybridization with a labeled probe prepared from 12 kb segment of the plasmid. Dot hybridization showed that the copy number of the plasmid in the transformed E. coli is at least 13 times higher than in the wild type P. fluorescens. The two key enzymes, malonate decarboxylase and acetyl-CoA synthetase, were inducible by malonate in the transformed E. coli.

  • PDF

Expression of Flagellin Proteins of Campylobacter jejuni within Microaerobic and Aerobic Exposures

  • LEE , YOUNG-DUCK;CHOI, JUNG-PIL;MOK, CHUL-KYOON;JI, GEUN-EOK;KIM, HAE-YEONG;NOH, BONG-SOO;PARK, JONG-HYUN
    • Journal of Microbiology and Biotechnology
    • /
    • v.14 no.6
    • /
    • pp.1227-1231
    • /
    • 2004
  • Campylobacter, one of the emerging foodborne pathogens, is highly adaptable to the external environments by changing its morphology. In the present study, a question of whether the whole-cell antibody would still be effective for its detection even though the morphology of C. jejuni was changed was examined. When microaerophilic C. jejuni was exposed to aerobic conditions for 48 h, its morphological change was detected by confocal laser scanning microscope: Its morphology was confirmed as a spiral-bacilli form in microaerobic condition, however, as a coccoid form with a little spiral-bacilli form, when exposed to aerobic conditions. Also, the expressions of the whole-cell proteins of C. jejuni, and the suppression or induction of newly synthesized proteins in both aerobic and microaerobic conditions were analyzed by two dimensional gel electrophoresis. Additionally, immunoblotting assay with the whole cell antibody for the proteins expressed under the two conditions was performed. It was confirmed that the commercial whole-cell antibody of C. jejuni raised in rabbit was reactive. When analyzed with MALDI- TOF MS, the expressed proteins were confirmed as flagellins. Therefore, even though the morphology changed in aerobic condition, these flagellins were expressed and worked as the eitope proteins, thus making it possible to utilize for the development of an immunosensor for real-time detection of any kind of C. jejuni cell.

Gene Expression Profiling of Eukaryotic Microalga, Haematococcus pluvialis

  • EOM HYUNSUK;PARK SEUNGHYE;LEE CHOUL-GYUN;JIN EONSEON
    • Journal of Microbiology and Biotechnology
    • /
    • v.15 no.5
    • /
    • pp.1060-1066
    • /
    • 2005
  • Under environmental stress, such as strong irradiance or nitrogen deficiency, unicellular green algae of the genus Haematococcus accumulate secondary carotenoids, i.e. astaxanthin, in the cytosol. The induction and regulation of astaxanthin biosynthesis in microalgae has recently received considerable attention owing to the increasing use of secondary carotenoids as a source of pigmentation for fish aquacultures, and as a potential drug in cancer prevention as a free-radical quencher. Accordingly, this study generated expressed sequence tags (ESTs) from a library constructed from astaxanthin-induced Haematococcus pluvialis. Partial sequences were obtained from the 5' ends of 1,858 individual cDNAs, and then grouped into 1,025 non-overlapping sequences, among which 708 sequences were singletons, while the remainder fell into 317 clusters. Approximately $63\%$ of the EST sequences showed similarity to previously described sequences in public databases. H. pluvialis was found to consist of a relatively high percentage of genes involved in genetic information processing ($15\%$) and metabolism ($11\%$), whereas a relatively low percentage of sequences was involved in the signal transduction ($3\%$), structure ($2\%$), and environmental information process ($3\%$). In addition, a relatively large fraction of H. pluvialis sequences was classified as genes involved in photosynthesis ($9\%$) and cellular process ($9\%$). Based on this EST analysis, the full-length cDNA sequence for superoxide dismutase (SOD) of H. pluvialis was cloned, and the expression of this gene was investigated. The abundance of SOD changed substantially in response to different culture conditions, indicating the possible regulation of this gene in H. pluvialis.

Steroid Metabolism in the Blackfin Flounder Glyptocephalus stelleri during Oocyte Maturation (기름가자미(Glyptocephalus stelleri) 성숙기 난모세포에서의 성스테로이드 호르몬 대사물질 분석)

  • Lee, Hae Won;Baek, Hea Ja
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.48 no.4
    • /
    • pp.483-488
    • /
    • 2015
  • We studied oocyte steroidogenesis in the blackfin flounder Glyptocephalus stelleri as a region-specific species, in the East Sea of Korea during the spawning season. Maturing oocytes (0.76, 0.82, 0.88, and 0.91 mm in oocyte diameter) were incubated in vitro in the presence of [$^3H$] $17{\alpha}$-hydroxyprogesterone ($[^3H]17{\alpha}$-OHP) as a precursor. Steroid metabolites were extracted from the incubated medium and oocytes, and the extracts were separated and identified by thin-layer chromatography (TLC), high-performance liquid chromatography (HPLC) and gas chromatographymass spectrometry (GC/MS). The major metabolites produced from $[^3H]17{\alpha}$-OHP were androgens [androstenedione (A4) and testosterone (T)] and estrogens [$17{\beta}$-estradiol (E2) and estrone (E1)] and progestins [$17{\alpha},20{\alpha}$-dihydroxy-4-pregen-3-one ($17{\alpha}20{\alpha}P$) and $17{\alpha}20{\beta}$-dihydroxy-4-pregnen-3-one ($17{\alpha}20{\beta}P$)] in maturing oocytes. The metabolic rate of $17{\alpha}20{\beta}$ was elevated (29.04%) in oocytes measuring 0.88 mm (nucleus migration stage following the induction of germinal vesicle breakdown), but was very low in oocytes measuring 0.76, 0.82, and 0.91 mm (0.42, 0.67, and 2.62%, respectively). From these results, we suggest that $17{\alpha}20{\beta}P$ acts as a maturation-inducing steroid in the blackfin flounder.

Proteomic Analysis of Erythritol-Producing Yarrowia lipolytica from Glycerol in Response to Osmotic Pressure

  • Yang, Li-Bo;Dai, Xiao-Meng;Zheng, Zhi-Yong;Zhu, Li;Zhan, Xiao-Bei;Lin, Chi-Chung
    • Journal of Microbiology and Biotechnology
    • /
    • v.25 no.7
    • /
    • pp.1056-1069
    • /
    • 2015
  • Osmotic pressure is a critical factor for erythritol production with osmophilic yeast. Protein expression patterns of an erythritol-producing yeast, Yarrowia lipolytica, were analyzed to identify differentially-expressed proteins in response to osmotic pressure. In order to analyze intracellular protein levels quantitatively, two-dimensional gel electrophoresis was performed to separate and visualize the differential expression of the intracellular proteins extracted from Y. lipolytica cultured under low (3.17 osmol/kg) and high (4.21 osmol/kg) osmotic pressures. Proteomic analyses allowed identification of 54 differentially-expressed proteins among the proteins distributed in the range of pI 3-10 and 14.4-97.4 kDa molecular mass between the osmotic stress conditions. Remarkably, the main proteins were involved in the pathway of energy, metabolism, cell rescue, and stress response. The expression of such enzymes related to protein and nucleotide biosynthesis was inhibited drastically, reflecting the growth arrest of Y. lipolytica under hyperosmotic stress. The improvement of erythritol production under high osmotic stress was due to the significant induction of a range of crucial enzymes related to polyols biosynthesis, such as transketolase and triosephosphate isomerase, and the osmotic stress responsive proteins like pyridoxine-4-dehydrogenase and the AKRs family. The polyols biosynthesis was really related to an osmotic response and a protection mechanism against hyperosmotic stress in Y. lipolytica. Additionally, the high osmotic stress could also induce other cell stress responses as with heat shock and oxidation stress responses, and these responsive proteins, such as the HSPs family, catalase T, and superoxide dismutase, also had drastically increased expression levels under hyperosmotic pressure.

Centella asiatica extract prevents visual impairment by promoting the production of rhodopsin in the retina

  • Park, Dae Won;Jeon, Hyelin;So, Rina;Kang, Se Chan
    • Nutrition Research and Practice
    • /
    • v.14 no.3
    • /
    • pp.203-217
    • /
    • 2020
  • BACKGROUND/OBJECTIVE: Centella asiatica, also known as Gotu kola, is a tropical medicinal plant native to Madagascar, Southeast Asia, and South Africa. It is well known to have biological activities, including wound healing, anti-inflammatory, antidiabetic, cytotoxic, and antioxidant effects. The purpose of this study was to determine the efficacy of extracts of C. asiatica against age-related eye degeneration and to examine their physiological activities. MATERIALS/METHODS: To determine the effects of CA-HE50 (C. asiatica 50% EtOH extract) on retinal pigment cells, we assessed the cytotoxicity of CoCl2 and oxidized-A2E in ARPE-19 cells and observed the protective effects of CA-HE50 against N-methyl-N-nitrosourea (MNU)-induced retinal damage in C57BL/6 mice. In particular, we measured factors related to apoptosis and anti-oxidation and the protein levels of rhodopsin/opsin. We also measured glucose uptake to characterize glucose metabolism, a major factor in cell protection. RESULTS: Induction of cytotoxicity with CoCl2 and oxidized-A2E inhibited decreases in the viability of ARPE-19 cells when CA-HE50 was administered, and promoted glucose uptake under normal conditions (P < 0.05). In addition, CA-HE50 inhibited degeneration/apoptosis of the retina in the context of MNU-induced toxicity (P < 0.05). In particular, CA-HE50 at 200 mg/kg inhibited the cleavage of pro-caspase-3 and pro-poly (ADP-ribose)-polymerase and maintained the expressions of nuclear factor erythroid 2-related factor 2 and heme oxygenase-1 similar to normal control levels. Rhodopsin/opsin expression was maintained at a higher level than in normal controls. CONCLUSION: A series of experiments confirmed that CA-HE50 was effective for inhibiting or preventing age-related eye damage/degeneration. Based on these results, we believe it is worthwhile to develop drugs or functional foods related to age-related eye degeneration using CA-HE50.