• Title/Summary/Keyword: Metabolic disorder

Search Result 321, Processing Time 0.026 seconds

A Case of Propionic Acidemia Presenting with Dilated Cardiomyopathy (확장성 심근병증으로 발현된 프로피온산혈증 1례)

  • Son, Jisoo;Choi, Yoon-Ha;Seo, Go Hun;Kang, Minji;Lee, Beom Hee
    • Journal of The Korean Society of Inherited Metabolic disease
    • /
    • v.21 no.1
    • /
    • pp.22-27
    • /
    • 2021
  • Propionic acidemia (PA) is an inherited autosomal recessive disorder, due to the deficiency of propionyl-CoA carboxylase (PCC). PCC is the enzyme which catalyzes the conversion of propionyl-CoA to D-methylmalonyl-CoA, and it is critical for the metabolism of amino acids, odd-chain fatty acids, and side chains of cholesterol. The clinical manifestations present mostly at the neonatal period with life-threatening metabolic acidosis and hyperammonemia. Here, we described a case of a 16-year-old Korean boy with late-onset PA who presented with embolic cerebral infarction due to dilated cardiomyopathy (DCMP) with left ventricular noncompaction. And he has family history of sudden cardiac death, so we performed metabolic screening and genetic tests. Elevated levels of 3-hydroxypropionic acid, methylcitric acid and propionylglycerine were detected in urine. Plasma acylcarnitine profile showed elevated propionylcarnitine (C3). Diagnosis of PA was confirmed by genetic analysis, which revealed compound heterozygous mutations, c.[1151T>G] (p.[Phe384Cys]) and c.[1228C>T] (p.[Arg410Trp]) in PCCB gene. His heart function is in improving state and the results of biochemical analysis are stable with heart failure medication and metabolic managements. We present a case of patient without episodes of metabolic decompensation who manifests DCMP as the first symptom of PA.

A Case of Glutaric Aciduria Type I with Macrocephaly (Glutaric Aciduria Type I 1례)

  • Shin, Woo Jong;Moon, Yeo Ok;Yoon, Hye Ran;Dong, Eun Sil;Ahn, Young Min
    • Clinical and Experimental Pediatrics
    • /
    • v.46 no.3
    • /
    • pp.295-301
    • /
    • 2003
  • Glutaric aciduria type 1(GA1) is an autosomal recessive disorder of the lysine, hydroxylysine and tryptophan metabolism caused by the deficiency of mitochondrial glutaryl-CoA dehydrogenase. This disease is characterized by macrocephaly at birth or shortly after birth and various neurologic symptoms. Between the first weeks and the 4-5th year of life, intercurrent illness such as viral infections, gastroenteritis, or even routine immunizations can trigger acute encephalopathy, causing injury to caudate nucleus and putamen. But intellectual functions are well preserved until late in the disease course. We report a one-month-old male infant with macrocephaly and hypotonia. In brain MRI, there was frontotemporal atrophy(widening of sylvian cistern). In metabolic investigation, there were high glutarylcarnitine level in tandem mass spectrometry and high glutarate in urine organic acid analysis, GA1 was confirmed by absent glutaryl-CoA dehydrogenase activity in fibroblast culture. He was managed with lysine free milk and carnitine and riboflavin. He developed well without a metabolic crisis. If there is macrocephaly in an infant with neuroradiologic sign of frontotemporal atrophy, GA1 should have a high priority in the differential diagnosis. Because current therapy can prevent brain degeneration in more than 90% of affected infants who are treated prospectively, recognition of this disorder before the brain has been injured is essential for treatment.

A compound heterozygous mutation in the FMO3 gene: the first pediatric case causes fish odor syndrome in Korea

  • Kim, Ji Hyun;Cho, Sung Min;Chae, Jong-Hee
    • Clinical and Experimental Pediatrics
    • /
    • v.60 no.3
    • /
    • pp.94-97
    • /
    • 2017
  • Trimethylaminuria (TMAuria), known as "fish odor syndrome," is a congenital metabolic disorder characterized by an odor resembling that of rotting fish. This odor is caused by the secretion of trimethylamine (TMA) in the breath, sweat, and body secretions and the excretion of TMA along with urine. TMAuria is an autosomal recessive disorder caused by mutations in flavin-containing monooxygenase 3 (FMO3). Most TMAuria cases are caused by missense mutations, but nonsense mutations have also been reported in these cases. Here, we describe the identification of a novel FMO3 gene mutation in a patient with TMAuria and her family. A 3-year-old girl presented with a strong corporal odor after ingesting fish. Genomic DNA sequence analysis revealed that she had compound heterozygous FMO3 mutations; One mutation was the missense mutation p.Val158Ile in exon 3, and the other was a novel nonsense mutation, p.Ser364X, in exon 7 of the FMO3 gene. Familial genetic analyses showed that the p.Val158Ile mutation was derived from the same allele in the father, and the p.Ser364X mutation was derived from the mother. This is the first description of the p.Ser364X mutation, and the first report of a Korean patient with TMAuria caused by novel compound heterozygous mutations.

A Case of Bartter Syndrome with Muscle Weakness and Short Stature (근무력증과 왜소증을 동반한 Bartter syndrome 1례)

  • Kim In-Sung;Kang Ju-Hyung;Shin Yun-Hei;Lee Dong-Kuk;Kim Soon-Nam;Pai Ki-Soo
    • Childhood Kidney Diseases
    • /
    • v.6 no.2
    • /
    • pp.259-265
    • /
    • 2002
  • Bartter syndrome is a rare disorder characterized by the association of hypokalemic hypochloremic metabolic alkalosis, hyperreninemia, hyperaldosteronemia, short stature and nephrocalcinosis. This disorder presents with hyperplasia of juxtaglomerular apparatus on renal biopsy. We experienced a case of late-onset Bartter syndrome with nephrocalcinosis in a 9-year-old boy, whose chief pictures were muscle weakness, short stature, persistent sterile pyuria and microscopic hematuria. We report this case with a brief review of related literatures.

  • PDF

Status of High Risk Group Fabry Disease Screening in Korea by Measuring Globotriacocylceramide in Body Fluid using Electrospray-MS/MS (탠덤매스에의한 체액 중 Globotriaocylceramide(Gb-3)의 측정을 이용한 한국인 고 위험도군에서의 파브리병 스크리닝)

  • Yoon, Hye-Ran
    • YAKHAK HOEJI
    • /
    • v.55 no.1
    • /
    • pp.56-63
    • /
    • 2011
  • Fabry disease (FD) is an X-linked inborn error of glycoshpingolipid metabolism resulting from mutation in the enzyme ${\alpha}$-galactosidase A gene. The disease is an X-linked lipid storage disorder and the lack of ${\alpha}$-Gal A causes an intracellular accumulation of glycosphingolipids, mainly globotriaosylceramide (Gb-3). Measurement of Gb-3 in plasma has clinical importance for monitoring after enzyme replacement therapy for confirmed FD patients. Using electrospray ionization MS/MS we had developed, a simple, rapid, and highly sensitive analytical method for Gb-3 in plasma was used for the purpose of screening FD among high risk groups in Korean population. To date, no comprehensive results for FD screening have been performed and reported in Korea. We screened 1,100 outpatients from 13 hospitals (including clinics) to assess the incidence of FD among patients in high risk groups. For patients with borderline level amount of Gb-3, we repeated Gb-3 or performing complementary or confirmative assay with ${\alpha}$-Gal A activity and DNA mutaion analysis for confirmation diagnosis. Of 1,100 we diagnosed 3 FD with 2 classical type and 1 carrier (0.27%).

1H-Nuclear Magnetic Resonance-Based Plasma Metabolic Profiling of Dairy Cows with Fatty Liver

  • Xu, Chuang;Sun, Ling-wei;Xia, Cheng;Zhang, Hong-you;Zheng, Jia-san;Wang, Jun-song
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.29 no.2
    • /
    • pp.219-229
    • /
    • 2016
  • Fatty liver is a common metabolic disorder of dairy cows during the transition period. Historically, the diagnosis of fatty liver has involved liver biopsy, biochemical or histological examination of liver specimens, and ultrasonographic imaging of the liver. However, more convenient and noninvasive methods would be beneficial for the diagnosis of fatty liver in dairy cows. The plasma metabolic profiles of dairy cows with fatty liver and normal (control) cows were investigated to identify new biomarkers using $^1H$ nuclear magnetic resonance. Compared with the control group, the primary differences in the fatty liver group included increases in ${\beta}$-hydroxybutyric acid, acetone, glycine, valine, trimethylamine-N-oxide, citrulline, and isobutyrate, and decreases in alanine, asparagine, glucose, ${\gamma}$-aminobutyric acid glycerol, and creatinine. This analysis revealed a global profile of endogenous metabolites, which may present potential biomarkers for the diagnosis of fatty liver in dairy cows.

Short-chain Acyl-CoA Dehydrogenase Deficiency in an Asymptomatic Neonate (무증상 신생아에서 진단된 경쇄 acyl-CoA 탈수소효소 결핍증 1례)

  • Lee, Yeonhee;Kim, Jinsup;Huh, Rimm;Cho, Sung Yoon;Jin, Dong-Kyu
    • Journal of The Korean Society of Inherited Metabolic disease
    • /
    • v.15 no.2
    • /
    • pp.93-97
    • /
    • 2015
  • Short-chain acyl-CoA dehydrogenase (SCAD) deficiency is an autosomal recessive hereditary metabolic disorder of mitochondrial fatty acid beta-oxidation. Mutations in the ACADS gene cause short-chain acyl-CoA dehydrogenase deficiency, which is characterized by developmental delay, hypotonia, seizure, and hypoglycemia. Here, we describe one Korean pediatric case of SCAD deficiency, which was diagnosed during newborn screening by tandem mass spectrometry and confirmed by molecular analysis. The level of C4 was typically elevated 5.23 mg/dL (reference range <1.5 mg/dL). This patient had a homozygous mutation [c.1031A>G, p. E344G] in ACADS. Therefore, we present a case of SCAD deficiency in an otherwise healthy neonate and her subsequent development and growth over four years.

A Case of Adrenoleukodystrophy Diagnosed as Hyponatremic Dehydration (저나트륨혈증성 탈수증으로 진단된 소아 부신백질이영양증 1례)

  • Lee, Sang Heon;Kim, HyungJin;Kwon, Young-Se;Kim, Soon-Ki;Lee, Ji-Eun
    • Journal of The Korean Society of Inherited Metabolic disease
    • /
    • v.14 no.1
    • /
    • pp.66-70
    • /
    • 2014
  • X-linked adrenoleukodystrophy (ALD) is a uncommon metabolic disorder which derived by peroxismal ${\beta}$-oxidation and elevation of serum very long chain fatty acid (VLCFA). VLCFA is mainly accumulated in the myelin of the central nervous system and adrenal cortex, by which the expressed symptoms of this disease are mainly neurologic and endocrinologic (such as adrenal insufficiency). The mutations in the ABCD1 gene causes X-linked ALD, nevertheless its phenotypes and genotypes are poorly coordinated. We report the case of a 12-year-old boy with X-linked ALD who developed vomiting, fatigue and poor oral intake. Severe dehydration and hyponatremia were found in initial physical examination and laboratory test, but his motor/sensory nerve function and mental status were completely normal. We diagnosed ALD with diffuse high-intensity signal in both parietotemporal cerebellar white matter in brain MRI and elevated serum VLCFA. Later, we confirmed a novel c.1635-1G>A (IVS6-1G>A) mutations of the ABCD1 gene. With the discrepancy between its phenotypes and genotypes, various phenotypes could be seen in X-ALD patient. Careful examination and further studies for these patients will be needed.

Pathway Analysis of Metabolic Syndrome Using a Genome-Wide Association Study of Korea Associated Resource (KARE) Cohorts

  • Shim, Unjin;Kim, Han-Na;Sung, Yeon-Ah;Kim, Hyung-Lae
    • Genomics & Informatics
    • /
    • v.12 no.4
    • /
    • pp.195-202
    • /
    • 2014
  • Metabolic syndrome (MetS) is a complex disorder related to insulin resistance, obesity, and inflammation. Genetic and environmental factors also contribute to the development of MetS, and through genome-wide association studies (GWASs), important susceptibility loci have been identified. However, GWASs focus more on individual single-nucleotide polymorphisms (SNPs), explaining only a small portion of genetic heritability. To overcome this limitation, pathway analyses are being applied to GWAS datasets. The aim of this study is to elucidate the biological pathways involved in the pathogenesis of MetS through pathway analysis. Cohort data from the Korea Associated Resource (KARE) was used for analysis, which include 8,842 individuals (age, $52.2{\pm}8.9years$ ; body mass index, $24.6{\pm}3.2kg/m^2$). A total of 312,121 autosomal SNPs were obtained after quality control. Pathway analysis was conducted using Meta-analysis Gene-Set Enrichment of Variant Associations (MAGENTA) to discover the biological pathways associated with MetS. In the discovery phase, SNPs from chromosome 12, including rs11066280, rs2074356, and rs12229654, were associated with MetS (p < $5{\times}10^{-6}$), and rs11066280 satisfied the Bonferroni-corrected cutoff (unadjusted p < $1.38{\times}10^{-7}$, Bonferroni-adjusted p < 0.05). Through pathway analysis, biological pathways, including electron carrier activity, signaling by platelet-derived growth factor (PDGF), the mitogen-activated protein kinase kinase kinase cascade, PDGF binding, peroxisome proliferator-activated receptor (PPAR) signaling, and DNA repair, were associated with MetS. Through pathway analysis of MetS, pathways related with PDGF, mitogen-activated protein kinase, and PPAR signaling, as well as nucleic acid binding, protein secretion, and DNA repair, were identified. Further studies will be needed to clarify the genetic pathogenesis leading to MetS.

Genome-Wide Association Study of Metabolic Syndrome in Koreans

  • Jeong, Seok Won;Chung, Myungguen;Park, Soo-Jung;Cho, Seong Beom;Hong, Kyung-Won
    • Genomics & Informatics
    • /
    • v.12 no.4
    • /
    • pp.187-194
    • /
    • 2014
  • Metabolic syndrome (METS) is a disorder of energy utilization and storage and increases the risk of developing cardiovascular disease and diabetes. To identify the genetic risk factors of METS, we carried out a genome-wide association study (GWAS) for 2,657 cases and 5,917 controls in Korean populations. As a result, we could identify 2 single nucleotide polymorphisms (SNPs) with genome-wide significance level p-values (< $5{\times}10^{-8}$), 8 SNPs with genome-wide suggestive p-values ($5{\times}10^{-8}{\leq}$ p < $1{\times}10^{-5}$), and 2 SNPs of more functional variants with borderline p-values ($5{\times}10^{-5}{\leq}$ p < $1{\times}10^{-4}$). On the other hand, the multiple correction criteria of conventional GWASs exclude false-positive loci, but simultaneously, they discard many true-positive loci. To reconsider the discarded true-positive loci, we attempted to include the functional variants (nonsynonymous SNPs [nsSNPs] and expression quantitative trait loci [eQTL]) among the top 5,000 SNPs based on the proportion of phenotypic variance explained by genotypic variance. In total, 159 eQTLs and 18 nsSNPs were presented in the top 5,000 SNPs. Although they should be replicated in other independent populations, 6 eQTLs and 2 nsSNP loci were located in the molecular pathways of LPL, APOA5, and CHRM2, which were the significant or suggestive loci in the METS GWAS. Conclusively, our approach using the conventional GWAS, reconsidering functional variants and pathway-based interpretation, suggests a useful method to understand the GWAS results of complex traits and can be expanded in other genomewide association studies.