• Title/Summary/Keyword: Metabolic consequence

Search Result 37, Processing Time 0.021 seconds

Metabolic Changes in Patients with Parkinson's Disease after Stereotactic Neurosurgery by Follow-up 1H MR Spectroscopy

  • Choe, Bo-Young;Baik, Hyun-Man;Chun, Shin-Soo;Son, Byung-Chul;Kim, Moon-Chan;Kim, Bum-Soo;Lee, Hyoung-Koo;Suh, Tae-Suk
    • Journal of the Korean Magnetic Resonance Society
    • /
    • v.5 no.2
    • /
    • pp.99-109
    • /
    • 2001
  • Authors investigated neuronal changes of local cellular metabolism in the cerebral lesions of Parkinsonian symptomatic side between before and after stereotactic neurosurgery by follow-up 1H magnetic resonance spectroscopy (MRS). Patients with Parkinson's disease (PD) (n = 15) and age-matched normal controls (n = 15) underwen MRS examinations using a stimulated echo acquisition mode (STEAM) pulse sequence that provided 2${\times}$2${\times}$2 ㎤ (8ml) volume of interest in the regions of substantia nigra, thalamus, and lentiform nucleus. Spectral parameters were 20 ms TE, 2000 ms TR, 128 averages,2500 Hz spectral width, and 2048 data points. Raw data were processed by the SAGE data analysis package (GE Medical Systems). Peak areas of N-acetylaspartate (NAA), creatine (Cr), choline-containing compounds (Cho), inositols (Ins), and the sum (Glx) of glutamate and GABA were calculated by means of fitting the spectrum to a summation of Lorentzian curves using Marquardt algorithm. After blindly processed, we evaluated neuronal alterations of observable metabolite ratios between before and after stereotactic neurosurgery using Pearson product-moment analysis (SPSS, Ver. 6.0). A significant reduction of NAA/Cho ratio was observed in the cerebral lesion in substantia nigra of PD patient related to the symptomatic side after neurosurgery (P : 0.03). In thalamus, NAA/Cho ratio was also significantly decreased in the cerebral lesion including the electrode-surgical region (P : 0.03). A significant reduction of NAA/Cho ratio in lentiform nucleus was not oberved, but tended toward significant reduction after neurosurgery (P = 0.08). In particular, remarkable lactate signal was noted from the surgical thalamic lesions of 6 among 8 patients and internal segments of globus pallidus of 6 among 7 patients, respectively. Significant metabolic alterations of NAA/Cho ratio might reflect functional changes of neuropathological processes in the lesion of substantia nigra, thalamus, and lentiform nucleus, and could be a valuable finding fur evaluation of Parkinson's disease after neurosurgery. Increase of lactate signals, being remarkable in surgical lesions, could be consistent with a common consequence of neurosurgical necrosis. Thus, IH MRS could be a useful modality to evaluate the diagnostic and prognostic implications fur Parkinsons disease after functional neurosurgery.

  • PDF

ORTHROGNATHIC SURGERY IN SEVERE CHRONIC RENAL FAILURE PATIENT (중증의 만성신부전 환자에서의 악교정 수술)

  • Shin, Sang-Hun;Kim, Ki-Hyun;Jeung, Suck-Young;Park, Sung-Hwan;Kim, Cheol-Hun
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • v.26 no.6
    • /
    • pp.652-657
    • /
    • 2000
  • The kidneys play a vital role in the maintenance of normal body fluid volumes and in the composition of the extracellular fluid compartments. There are normally more than 2 million functioning glomeruli that regulate total body water and solute concentrations. As renal failure progresses, there is a decrease in the number of functioning nephrons. Chronic renal failure(CRF) is the consequence of a multitude of diseases that cause permanent destruction of the nephron. Azotemia is an elevation in blood urea nitrogen(BUN) and serum creatinine levels subsequent to a decreased glomerular filtration rate(GFR), which results in uremia. This loss of renal function can cause functional and metabolic abnomalities of body. For this problem, oral & maxillofacial surgeons have demanded to routinely treat patients with CRF. However, there has not been a reported case of orthognathic surgery by bilateral sagittal split ramus osteotomy(BSSRO) in patients with CRF, which can cause multiple complications in healthy patients. We report developmental mechanism of complication associated with CRF and preop. and postop. care of orthognathic surgery by BSSRO in Cl III patient with severe chronic renal failure.

  • PDF

Pyruvate Protection against Endothelial Cytotoxicity Induced by Blockade of Glucose Uptake

  • Chung, Se-Jin;Lee, Se-Hee;Lee, Yong-Jin;Park, Hyoung-Sook;Bunger, Rolf;Kang, Young-Hee
    • BMB Reports
    • /
    • v.37 no.2
    • /
    • pp.239-245
    • /
    • 2004
  • We have previously demonstrated that the redox reactant pyruvate prevents apoptosis in the oxidant model of bovine pulmonary artery endothelial cells (BPAEC), and that the anti-apoptotic mechanism of pyruvate is mediated in part via the mitochondrial matrix compartment. However, cytosolic mechanisms for the cytoprotective feature of pyruvate remain to be elucidated. This study investigated the pyruvate protection against endothelial cytotoxicity when the glycolysis inhibitor 2-deoxy-D-glucose (2DG) was applied to BPAEC. Millimolar 2DG blocked the cellular glucose uptake in a concentration- and time-dependent manner with >85% inhibition at $\geq$5 mM within 24 h. The addition of 2DG evoked BPAEC cytotoxicity with a substantial increase in lipid peroxidation and a marked decrease in intracellular total glutathione. Exogenous pyruvate partially prevented the 2DG-induced cell damage with increasing viability of BPAEC by 25-30%, and the total glutathione was also modestly increased. In contrast, 10 mM L-lactate, as a cytosolic reductant, had no effect on the cytotoxicity and lipid peroxidation that are evoked by 2DG. These results suggest that 2DG toxicity may be a consequence of the diminished potential of glutathione antioxidant, which was partially restored by exogenous pyruvate but not L-lactate. Therefore, pyruvate qualifies as a cytoprotective agent for strategies that attenuate the metabolic dysfunction of the endothelium, and cellular glucose oxidation is required for the functioning of the cytosolic glutathione/NADPH redox system.

Biochemical Aspect of Superoxide Toxicity to Plant Mitochondria (식물 미토콘드리아에 대한 Superoxide독성의 생화학적 측면)

  • Jung, Jin;In, Man-Jin
    • Applied Biological Chemistry
    • /
    • v.32 no.1
    • /
    • pp.23-29
    • /
    • 1989
  • Biochemical consequence of the accumulation in cells of superoxide $(O^{-}_{2})$ which was proposed to be probably a common chemical factor in the secondary process of the mechanism of chilling injury as well as in the visible light photodamage in cells of higher plants, has been investigated in the present work. Especially focused was the destructive effect of $O^{-}_{2}$ on the biochemical activity of mitochondria, as informations which support the suggestion that mitochondrial inner membrane is the major site of $O^{-}_{2}$ production have been collected. Mitochondria and submitochondrial particles (SMP) were prepared from soybean hypocotyls for this case study. When SMP were treated with the electrolytically produced $O^{-}_{2}$ they suffered not only inhibition of the membrane-bound enzymes as demonstrated by cytochrome c oxidase, but also lipid peroxidation of membrane as proved by malondialdehyde production. Malate dehydrogenase present in the protein extract from mitochondrial matrix was also inhibited by the $O^{-}_{2}$ treatment. These results exhibited the chaotic effect of the overproduction and accumulation of $O^{-}_{2}$ in cells under a certain abnormal circumstance such as environmental stress on the physiological function of mitochondrial; disruption of the cellular metabolic pathways and the structural integrity of membrane.

  • PDF

Determination of Antioxidant Activities and Bioactive Compounds from Rosa rugosa Extract (해당화 추출물의 주요물질 분석에 따른 폴리페놀 함량 및 항산화 활성 탐색)

  • Jun Hee, Kim;Youn Sun, Hwang;Jae Hoon, Park;Min Ho, Kang;Ye Sol, Oh;Jin Woo, Kim
    • Journal of Life Science
    • /
    • v.32 no.11
    • /
    • pp.841-846
    • /
    • 2022
  • The purpose of this study was to evaluate the antioxidant properties of Rosa rugosa extract and to identify which of its components are responsible for these properties. Reactive oxygen species play an important role in diseases such as cancer, arteriosclerosis, and heart disease as a consequence of increased metabolic rates, gene mutations, and relative hypoxia. Therefore, the antioxidant effect of R. rugosa extract was confirmed by HPLC, HPLC-MS/MS, the total polyphenol content, the total flavonoid content, and the radical scavenging activity. HPLC and HPLC-MS/MS analyses were conducted to identify and quantify the main components of the R. rugosa extract. Gallic acid and epigallocatechin gallate were identified as the main components, with 17.4 and 4.35 mg/g dry matter (DM), respectively. The antioxidant activity of R. rugosa extract was evaluated based on its total polyphenol content, total flavonoid content, and radical scavenging activity, which were 72.3 mg gallic acid equivalent/g DM, 11.2 mg quercetin equivalent/g DM, and 87.9%, respectively. The radical scavenging activities of the main components, gallic acid and epigallocatechin gallate, were 80.5% and 89.7%, respectively. Therefore, R. rugosa has a high polyphenol content and antioxidant activity, and it can be used as a natural antioxidant in food, cosmetics, and pharmaceuticals.

Insulin-like growth factor가 소장 점막 세포 증식에 미치는 영향

  • 윤정한
    • Proceedings of the Korean Nutrition Society Conference
    • /
    • 1995.11b
    • /
    • pp.11-34
    • /
    • 1995
  • Growth hormone (GH) plays a key role in regulating postnatal growth and can stimulate growth of animals by acting directly on specific receptors on the plasma membrane of tissues or indirectly through stimulating insulin-like growth factor (IGF)-I synthesis and secretion by the liver and other tissues. IGF-I and IGF-Ⅱ are polypeptides with structural similarity with proinsulin that stimulate cell proliferation by endocrine, paracrine and autocrine mechanisms. The initial event in the metabolic action of IGFs on target cells appears to be their binding to specific receptors on the plasma membrane. Current evidence indicates that the mitogenic actions of both IGFs are mediated primarily by binding to the type I IGF receptors, and that IGF action is also mediated by interactions with IGF-binding proteins (IGFBPs). Six distinct IGFBPs have been identified that are characterized by cell-specific interaction, transcriptional and post-translational regulation by many different effectors, and the ability to either potentiate or inhibit IGF actions. Nutritional deficiencies can have their devastating consequence during growth. Although IGF-I is the major mediator of GH's action on somatic growth, nutritional status of an organism is a critical regulator of IGF-I and IGFBPs. Various nutrient deficiencies result in decreased serum IGF-I levels and altered IGFBP levels, but the blood levels of GH are generally unchanged or elevated in malnutrition. Effects of protein, energy, vitamin C and D, and zinc on serum IGF and IGFBP levels and tissue mRNA levels were reviewed in the text. Multiple factors are involved in the regulation of intestinal epithelial cell growth and differentiation. Among these factors the nutritional status of individuals is the most important. The intestinal epithelium is an important site for mitogenic action of the IGFs in vivo, with exogenous IGF-I stimulating mucosal hyperplasia. Therefore, the IGF system appears to provide and important mechanism linking nutrition and the proliferation of intestinal epithelial cells. In order to study the detailed mechanisms by which intestinal mucosa is regulated, we have utilized IEC-6 cells, an intestinal epithelial cell line and Caco-2 cells, a human colon adenocarcinoma cell line. Like intestinal crypt cells analyzed in vivo or freshly isolated intestinal epithelial cells, IEC-6 cells and Caco-2 cells possess abundant quatities of both type Ⅰ and type Ⅱ IGF receptors. Exogenous IGFs stimulate, whereas addition of IGFBP-2 inhibits IEC-6 cell proliferation. To investigate whether endogenously secreted IGFBP-2 inhibit proliferation, IEC-6 cells were transfected with a full-length rat IGFBP-2 cDNA anti-sense expression construct. IEC-6 cells transfected with anti-sense IGFBP-2 protein in medium. These cells grew at a rate faster than the control cells indicating that endogenous IGFBP-2 inhibits proliferation of IEC-6 cells, probably by sequestering IGFs. IEC-6 cells express many characteristics of enterocyte, but do not undergo differentiation. On the other hand, Caco-2 cells undergo a spontaneous enterocyte differentiation. On the other hand, Caco-2 cells undergo a spontaneous enterocyte differentiation after reaching confluency. We have demonstrated that Caco-2 cells produce IGF-Ⅱ, IGFBP-2, IGFBP-3, and an as yet unidentified 31,000 Mr IGFBP, and that both mRNA and peptide secretion of IGFBP-2 and IGFBP-3 increased, but IGFBP-4 mRNA and protein secretion decreased after the cells reached confluency. These changes occurred in parallel to and were coincident with differentiation of the cells, as measured by expression of sucrase-isomaltase. In addition, Caco-2 cell clones forced to overexpress IGFBP-4 by transfection with a rat IGFBP-4 cDNA construct exhibited a significantly slower growth rate under serum-free conditions and had increased expression of sucrase-isomaltase compared with vector control cells. These results indicate that IGFBP-4 inhibits proliferation and stimulates differentiation of Caco-2 cells, probably by inhibiting the mitogenic actions of IGFs.

  • PDF

Influence of Oxygen Concentration on the Food Consumption and Growth of Common Carp, Cyprinus carpio L. (잉어 Cyprinus carpio의 먹이 섭취량과 성장에 미치는 용존산소량의 영향)

  • SAIFABADI Jafar;KIM In-Bae
    • Journal of Aquaculture
    • /
    • v.2 no.2
    • /
    • pp.53-90
    • /
    • 1989
  • Feeding proper level of ration matchable with the appetite of fish will enhance production and also prevent waste of food and its consequence, side effects such as pollution of culture medium. To pursue this goal, elaborate studies on dissolved oxygen concentrations- as the major force in inducing appetite and the growth outcome are necessary. The growth of common carp of 67, 200, 400, 600, and 800 gram size groups was studied at oxygen concentrations ranging from 2.0 to 6 mg/$\iota$ in relation to rations from 1 to as many percent of the initial body weight as could be consumed under constant temperature of $25^{\circ}C$. The results from the experiments are summarized as followings; 1. Appetite: The smaller fish exhibited higher degree of appetite than the bigger ones at the same oxygen concentrations. The bigger the fish the less tolerant it was to the lower oxygen thersholds, and the degree of tolerence decreased as ration level increased. 2. Growth : Growth rate (percent per day) increased - unless consumption was suppressed by low oxygen levels- as the ration was increased to maximum. In case of 67 g fish, it reached the highest point of $5.05\%$ / day at $7\%$ ration under 5.0 mg/$\iota$ of oxygen. In case of 200 g fish, the maximum growth rate of $3.75\%$/day appeared at the maximum ration of $6\%$ under 5.5 mg/$\iota$ of oxygen. In 400 g fish, the highest growth of $3.37\%$/day occurred at the maximum ration of $5\%$ and 6.0 mg/$\iota$ of oxygen. In 600 g fish, the highest growth rate of $2.82\%$ /day was at the maximum ration of $4\%$ under 5.5 mg/$\iota$ oxygen. In case of 800g fish, the highest growth rate of $1.95\%$/day was at maximum tested ration of $3\%$ under 5.0 mg/$\iota$ oxygen. 3. Food Conversion Efficiency: Food conversion efficiency ($\%$ dry feed converted into the fish tissue) first increased as the ration was increased, reached maximum at certain food level, then started decreasing with further increase in the ration. The maximum conversion efficiency stood at higher feeding rate for the smaller fish than the larger ones. In case of 67 g fish, the maximum food conversion efficiency was at $4\%$ ration within 3.0-4.0 mg/$\iota$ oxygen. In 200g fish, the maximum efficiency was at $3\%$ ration within 4.0-4.5 mg/$\iota$ oxygen. In 400g fish, the maximum efficiency was at $2\%$ ration within 4.0 - 4.5 mg/$\iota$ oxygen. In 600 and 800g fish, the maximum conversion efficiency shifted to the lowest ration ($1\%$) and lower oxygen ranges. 4. Behaviour: The fish within uncomfortably low oxygen levels exhibited suppressed appetite and movements and were observed to pass feces quicker and in larger quantity than the ones in normal condition; in untolerably low oxygen the fish were lethargic, vomited, and had their normal skin color changed into pale yellow or grey patches. All these processes contributed to reducing food conversion efficiency. On the other hand, the fish within relatively higher oxygen concentrations exhibited higher degree of movement and their food conversion tended to be depressed when compared with sister groups under corresponding size and ration within relatively low oxyen level. 5. Suitability of Oxygen Ranges to Rations: The oxygen level of 2.0- 2.5 mg/$\iota$ was adequate to sustain appetite at $1\%$ ration in all size groups. As the ration was increased higher oxygen was required to sustain the fish appetite and metabolic activity, particularly in larger fish. In 67g fish, the $2\%$ ration was well supported by 2.0-2.5 mg/$\iota$ range; as the ration increased to $5\%$, higher range of 3.0-4.0 mg/$\iota$ brought better appetite and growth; from 5 till $7\%$ (the last tested ration for 67 g fish) oxygen levels over 4.0 mg/$\iota$ could sustain appetite. In 200 g fish, the 2 and $3\%$ rations brought the best growth and conversion rates at 3.5-4.5 mg/$\iota$ oxygen level; from 3 till $6\%$ (the last tested ration at 200 g fish) oxyge groups over 4.5 mg/$\iota$ were matchable with animal's appetite. In 400, 600, and 800 g fish, all the rations above $2\%$ had to be generally supported with oxygen levels above 4.5 mg/$\iota$.

  • PDF