• Title/Summary/Keyword: Metabolic Rate

Search Result 874, Processing Time 0.026 seconds

Differences in dietary intakes, body compositions, and biochemical indices between metabolically healthy and metabolically abnormal obese Korean women

  • Kang, Eun Yeong;Yim, Jung-Eun
    • Nutrition Research and Practice
    • /
    • v.13 no.6
    • /
    • pp.488-497
    • /
    • 2019
  • BACKGROUND/OBJECTIVES: There are various factors that affect metabolic abnormalities related to obesity. The purpose of this study is to analyze the differences in dietary intakes and body compositions of obese women according to metabolic risks and to classify them as metabolically healthy obese (MHO) or metabolically abnormal obese (MAO). SUBJECTS/METHODS: This study was conducted on 59 obese Korean women aged 19 to 60 years. NCEP-ATPIII criteria were applied and the women classified as MHO (n = 45) or MAO (n = 14). Body composition of each subject was measured by using dual-energy x-ray absorptiometry (DEXA). Three-day food records were used to analyze dietary intake. Eating habits and health-related behaviors were determined through questionnaires. Indirect calorimetry was used to measure resting metabolic rate and respiratory rate. RESULTS: The average age of the subjects was 43.7 years. The analysis of body composition according to phenotype revealed significantly higher body fat mass (P < 0.05), arm fat mass (P < 0.05), and android fat mass (P < 0.05), as measured by DEXA, in the MAO group than in the MHO group. There was no significant difference in the dietary intake of the two groups. However, eating behaviors differed. Compared to the MHO group, the MAO women had a shorter meal time (less than 10 minutes), a preference of oily foods, and a tendency to eat until full. Therefore, the eating habits of MHO women were more positive than those of MAO women. CONCLUSIONS: The results suggest that fat distribution in each body region affects various metabolic abnormalities. A high level of arm fat mass in obese Korean women may increase metabolic risk. In addition, eating habits of obese Korean women are considered to be environmental factors affecting the metabolic phenotype of obese Korean women.

Association between metabolic syndrome components and cardiac autonomic modulation in southern Indian adults with pre-metabolic syndrome: hyperglycemia is the major contributing factor

  • Endukuru Chiranjeevi Kumar;Girwar Singh Gaur;Dhanalakshmi Yerrabelli;Jayaprakash Sahoo;Balasubramaniyan Vairappan;Alladi Charanraj Goud
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.27 no.1
    • /
    • pp.49-59
    • /
    • 2023
  • Metabolic syndrome (MetS) involves multi-factorial conditions linked to an elevated risk of type 2 diabetes mellitus and cardiovascular disease. Pre-metabolic syndrome (pre-MetS) possesses two MetS components but does not meet the MetS diagnostic criteria. Although cardiac autonomic derangements are evident in MetS, there is little information on their status in pre-MetS subjects. In this study, we sought to examine cardiac autonomic functions in pre-MetS and to determine which MetS component is more responsible for impaired cardiac autonomic functions. A total of 182 subjects were recruited and divided into healthy controls (n=89) and pre-MetS subjects (n=93) based on inclusion and exclusion criteria. We performed biochemical profiles on fasting blood samples to detect pre-MetS. Using standardized protocols, we evaluated anthropometric data, body composition, baroreflex sensitivity (BRS), heart rate variability (HRV), and autonomic function tests (AFTs). We further examined these parameters in pre-MetS subjects for each MetS component. Compared to healthy controls, we observed a significant cardiac autonomic dysfunction (CAD) through reduced BRS, lower overall HRV, and altered AFT parameters in pre-MetS subjects, accompanied by markedly varied anthropometric, clinical and biochemical parameters. Furthermore, all examined BRS, HRV, and AFT parameters exhibited an abnormal trend and significant correlation toward hyperglycemia. This study demonstrates CAD in pre-MetS subjects with reduced BRS, lower overall HRV, and altered AFT parameters. Hyperglycemia was considered an independent determinant of alterations in all the examined BRS, HRV, and AFT parameters. Thus, hyperglycemia may contribute to CAD in pre-MetS subjects before progressing to MetS.

Energy Metabolism in Human Pluripotent Stem and Differentiated Cells Compared Using a Seahorse XF96 Extracellular Flux Analyzer

  • Hyun Kyu Kim;Yena Song;Minji Kye;Byeongho Yu;Sang Beom Park;Ji Hyeon Kim;Sung-Hwan Moon;Hyungkyu Choi;Jong-Seok Moon;Jae Sang Oh;Man Ryul Lee
    • International Journal of Stem Cells
    • /
    • v.17 no.2
    • /
    • pp.194-203
    • /
    • 2024
  • Evaluating cell metabolism is crucial during pluripotent stem cell (PSC) differentiation and somatic cell reprogramming as it affects cell fate. As cultured stem cells are heterogeneous, a comparative analysis of relative metabolism using existing metabolic analysis methods is difficult, resulting in inaccuracies. In this study, we measured human PSC basal metabolic levels using a Seahorse analyzer. We used fibroblasts, human induced PSCs, and human embryonic stem cells to monitor changes in basal metabolic levels according to cell number and determine the number of cells suitable for analysis. We evaluated normalization methods using glucose and selected the most suitable for the metabolic analysis of heterogeneous PSCs during the reprogramming stage. The response of fibroblasts to glucose increased with starvation time, with oxygen consumption rate and extracellular acidification rate responding most effectively to glucose 4 hours after starvation and declining after 5 hours of starvation. Fibroblasts and PSCs achieved appropriate responses to glucose without damaging their metabolism 2~4 and 2~3 hours after starvation, respectively. We developed a novel method for comparing basal metabolic rates of fibroblasts and PSCs, focusing on quantitative analysis of glycolysis and oxidative phosphorylation using glucose without enzyme inhibitors. This protocol enables efficient comparison of energy metabolism among cell types, including undifferentiated PSCs, differentiated cells, and cells undergoing cellular reprogramming, and addresses critical issues, such as differences in basal metabolic levels and sensitivity to normalization, providing valuable insights into cellular energetics.

A Novel Draft Genome-Scale Reconstruction Model of Isochrysis sp: Exploring Metabolic Pathways for Sustainable Aquaculture Innovations

  • Abhishek Sengupta;Tushar Gupta;Aman Chakraborty;Sudeepti Kulshrestha;Ritu Redhu;Raya Bhattacharjya;Archana Tiwari;Priyanka Narad
    • Microbiology and Biotechnology Letters
    • /
    • v.52 no.2
    • /
    • pp.141-151
    • /
    • 2024
  • Isochrysis sp. is a sea microalga that has become a species of interest because of the extreme lipid content and rapid growth rate of this organism indicating its potential for efficient biofuel production. Using genome sequencing/genome-scale modeling for the prediction of Isochrysis sp. metabolic utilities there is high scope for the identification of essential pathways for the extraction of byproducts of interest at a higher rate. In our work, we design and present iIsochr964, a genome-scale metabolic model of Isochrysis sp. including 4315 reactions, 934 genes, and 1879 metabolites, which are distributed among fourteen compartments. For model validation, experimental culture, and isolation of Isochrysis sp. were performed and biomass values were used for validation of the genome-scale model. OptFlux was instrumental in uncovering several novel metabolites that influence the organism's metabolism by increasing the flux of interacting metabolites, such as Malonyl-CoA, EPA, Protein and others. iIsochr964 provides a compelling resource of metabolic understanding to revolutionize its industrial applications, thereby fostering sustainable development and allowing estimations and simulations of the organism metabolism under varying physiological, chemical, and genetic conditions. It is also useful in principle to provide a systemic view of Isochrysis sp. metabolism, efficiently guiding research and granting context to omics data.

Association between Eating Alone and Metabolic Syndrome: A Structural Equation Modeling Approach (홀로식사와 대사증후군의 관련성: 구조방정식 모형을 이용한 위험요인 분석)

  • Song, Soo-Yeon;Jeong, Yun-Hui
    • Journal of the Korean Dietetic Association
    • /
    • v.25 no.2
    • /
    • pp.142-155
    • /
    • 2019
  • The aim of this study was to construct and test a structural equation model for the risk factors of metabolic syndrome in Korean adults. The structural equation model hypothesizes that eating alone and feeling depressed is a risk factor for metabolic syndrome. The data of this study were obtained from the Sixth Korea National Health and Nutrition Examination Survey which was cross-sectional data from the representative national survey. A total of 4,013 subjects replied to the survey item of lifestyle and completed the physical examinations among adults aged 19 years or older in South Korea was in 2015. The structural model in this study was composed of four latent variables: eating alone, depression, negative health behavior, and metabolic syndrome. Two variables, the rate of eating alone and depression, were exogenous variables. Negative health behavior was both a mediating variable and endogenous variable, and metabolic syndrome was the final endogenous variable. The data were analyzed using the Maximum Likelihood method and bootstrapping. The structural model was appropriate for the data based on the model fit indices. The results of this study can be summarized as follows: Eating alone is a direct risk factor of metabolic syndrome in Korean women. Depression can mediate metabolic syndrome through negative health behaviors. Negative health behavior had a direct impact on metabolic syndrome in both men and women. This study may be a guideline for interventions and strategies to reduce the incidence of metabolic syndrome in Korean adults.

Changes in Respiratory Metabolism and Blood Chemistry of Olive Flounder Paralichthys olivaceus Exposed to Hypoxia (저산소에 노출된 넙치(Paralichthys olivaceus)의 호흡대사와 혈액의 화학적 변화)

  • Han, Ji-Do;Kim, Heung-Yun
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.49 no.1
    • /
    • pp.45-52
    • /
    • 2016
  • This experiment investigated changes in metabolic rate (MO2), critical oxygen saturation (Scrit), and blood chemistry of olive flounder Paralichthys olivaceus exposed to progressive hypoxia and returned to normoxic water at 20°C. The normoxic standard metabolic rate (SMR) and routine metabolic rate (RMR) were 69.5-83.9 and 70.2-156.4 mg O2 kg-1h-1, respectively based on fish weight. Scrit was 31.0% dissolved oxygen (DO) at 20°C. After returning the fish to 70% DO following exposure to hypoxia (20% DO), MO2 increased two-fold compared to the normoxic SMR and then decreased into the range of the RMR with time. Blood PO2 and plasma lactate decreased significantly after exposure to hypoxia (20% DO) and then increased as ambient oxygen saturation decreased. Cortisol levels increased as ambient oxygen saturation decreased, but the levels decreased rapidly in the range of the normoxic control when the fish were returned to ambient water with 70% DO. Plasma glucose levels increased when the fish were returned to normoxic water after exposure to a progressively more hypoxic condition.

Estimation of Expected Temperature Using Heat Balance Model and Observation Data

  • Kim, Eun-Byul;Park, Jong-Kil;Jung, Woo-Sik
    • Asian Journal of Atmospheric Environment
    • /
    • v.9 no.3
    • /
    • pp.214-221
    • /
    • 2015
  • This study considers mean skin temperature to calculate expected temperature using the new heat balance model because the skin temperature is the most important element affecting the heat balance outdoors. For this, we measured the skin temperature in high temperature condition of Korea and applied it to calculate the expected temperature. The calculated expected temperature is compared with the result calculated using previous models which use the estimated mean skin temperature by considering metabolic rate only. Results show that the expected temperatures are higher when measured mean skin temperature is applied to the model, compared to the expected temperature calculated by applying mean skin temperature data calculated using metabolic rate like previous models. The observed mean skin temperature was more suitable for outside conditions and expected temperature is underestimated when mean skin temperature calculated by the equation using metabolic rate is used. The model proposed in this study has a few limitations yet, but it can be applied in various ways to facilitate practical responses to extreme heat.

Thermoregulation on Menstrual Cycle -Effects of Ambient Temperatures- (생리주기에 따른 체온조절에 관한 연구 -환경온도의 영향을 중심으로-)

  • 황수경;최정화
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.25 no.2
    • /
    • pp.339-349
    • /
    • 2001
  • This study was investigated the effects of ambient temperatures and menstrual cycle on Resting Metabolic Rate(RMR), Rectal Temperature(Tre), Skin(forehead, chest, abdomen, forearm, hand, thigh, leg, foot) Temperatures, and subjective thermal sensations in 8 young Korean females(ages 22-25, voluntarily). The Tre and the Skin Temperatures were measured in once every five minute for one hour. RMR was measured three times at 30 minutes intervals by indirect calorimetry. All measurements were gathered during Luteal Phase(LP), Menstruation(M), and Follicular Phase(FP) at two levels of ambient temperatures; low(17~21$^{\circ}C$) and middle(21.1~$25^{\circ}C$). LP were the highest values during FP and M in RMR, Tre, forehead temperature, chest temperature and abdomen temperature, while the leg(leg and foot) and arm(forearm and hand) temperatures were higher during FP rather than during LP at each ambient temperature. The downward curve of Tre in the experiment was larger during FP than LP. The values in subjective thermal sensations were most comfortable during LP than M and FP at each ambient temperature. The LP-FP differences in core and mean skin temperatures, and resting metabolic rate, were more significant at middle ambient temperatures than at low ambient temperatures.

  • PDF

The Changes of Body Compositions after Modified Fasting Therapy: A Retrospective Observational Study (절식요법이 체성분 변화에 미치는 영향: 후향적 관찰연구)

  • Lee, Eun Jung
    • Journal of Korean Medicine for Obesity Research
    • /
    • v.16 no.2
    • /
    • pp.116-123
    • /
    • 2016
  • Objectives: The purpose of this study was to investigate the effects of modified fasting therapy on the changes of body compositions. Methods: We analyzed the medical records of 33 patients, who carried out modified fasting therapy at Dunsan Korean Medicine Hospital of Daejeon University from January 1st, 2011 to December 30th, 2015. They went through reducing food intakes period (7 days), fasting period (14 days) and refeeding period (14 days). Body compositions (weight, body mass index, skeletal muscle mass, percent body fat, basal metabolic rate, waist-hip ratio, visceral fat area) were reviewed at each state. And then the data was analyzed. Results: The body composition values (weight, body mass index [BMI], skeletal muscle mass, percent body fat, basal metabolic rate, waist-hip ratio, visceral fat area) decreased during the fasting therapy period, as a whole. The weight, BMI, percent body fat and visceral fat area decreased during the reducing food intakes period, the fasting period and the refeeding period. The skeletal muscle mass and basal metabolic rate significantly decreased during the reducing food intakes period and the fasting period, and insignificantly increased during the refeeding period. Conclusions: Results from this investigation showed that modified fasting therapy using fermented herbal medicine have positive effects on changes of body compositions.

Aged and Exercise in view of Exercise Physiology (운동생리학으로 본 노인과 운동)

  • Park Rae-Joon;Park Hwan-Jin
    • The Journal of Korean Physical Therapy
    • /
    • v.12 no.1
    • /
    • pp.141-146
    • /
    • 2000
  • Making aged exercise by their age it unreasonable because there an differences of personal strength of their body. The three elements which control the aged's possibility of exercising effectivencess are the level of the physical strength in the present state, potential capacities of physical strength and age. Examined the physical strength of aged, the pliancy of body is considerably marked decline by and large and fast twitch muscle are withered. The reason why aged often do prime exercise like and infant. Aged are not fit for the speedy exercise and they can give full scope to their ability by continuing the long time exercise. The reason why aged should dwindle is mainly the retardation of recovering their fatigue which is related to the decline of oxygen activity. Anaerobic energy supply reduction makes aged be bad for severe physical exercise. Basal metabolic rate of rely on physical cellular quantity and people exercising has a high basal metabolic rate because of muscular amount. There were no decline of basal metabolic rate fellowing the age and physical non activiti influences on the atrophy of muscle.

  • PDF