• 제목/요약/키워드: Metabolic Enzymes

검색결과 372건 처리시간 0.034초

Comparative Whole Cell Proteomics of Listeria monocytogenes at Different Growth Temperatures

  • Won, Soyoon;Lee, Jeongmin;Kim, Jieun;Choi, Hyungseok;Kim, Jaehan
    • Journal of Microbiology and Biotechnology
    • /
    • 제30권2호
    • /
    • pp.259-270
    • /
    • 2020
  • Listeria monocytogenes is a gram-positive, facultative anaerobe food pathogen responsible for the listeriosis that mostly occurs during the low-temperature storage of a cold cut or dairy products. To understand the systemic response to a wide range of growth temperatures, L. monocytogenes were cultivated at a different temperature from 10℃ to 42℃, then whole cell proteomic analysis has been performed both exponential and stationary cells. The specific growth rate increased proportionally with the increase in growth temperature. The maximum growth rate was observed at 37℃ and was maintained at 42℃. Global protein expression profiles mainly depended on the growth temperatures showing similar clusters between exponential and stationary phases. Expressed proteins were categorized by their belonging metabolic systems and then, evaluated the change of expression level in regard to the growth temperature and stages. DnaK, GroEL, GroES, GrpE, and CspB, which were the heat&cold shock response proteins, increased their expression with increasing the growth temperatures. In particular, GroES and CspB were expressed more than 100-fold than at low temperatures during the exponential phase. Meanwhile, CspL, another cold shock protein, overexpressed at a low temperature then exponentially decreased its expression to 65-folds. Chemotaxis protein CheV and flagella proteins were highly expressed at low temperatures and stationary phases. Housekeeping proteins maintained their expression levels constant regardless of growth temperature or growth phases. Most of the growth related proteins, which include central carbon catabolic enzymes, were highly expressed at 30℃ then decreased sharply at high growth temperatures.

Lard와 Alcohol을 섭취시킨 흰쥐 혈청중의 효소활성에 인삼추출물이 미치는 영향 (Effect of Ginseng Extract on Enzyme activities of Rats Fed Lard and Alcohol)

  • 변부형;김석환
    • 한국식품위생안전성학회지
    • /
    • 제13권3호
    • /
    • pp.268-273
    • /
    • 1998
  • Lard 와 Alcohol을 섭취시킨 흰쥐 혈청중의 효소 활성에 인삼추출물이 미치는 영향을 검토하기 위해서 흰쥐에 Lard 와 Alcohol 및 인삼추출물을 첨가한 식이를 10주간 급여하여 성장시킨 후 체중, 각종 장기 중량, 혈청중 AST, ALT, ALP, LDH의 활성을 측정하였을 때 다음과 같은 결과를 얻었다. Lard 와 Alcohol 첨가 식이군에서는 체중과 식이섭취량은 감소하였으나, 인삼추출물의 투여에 의한 식이효율은 증가하였다. lard의 첨가 식이로 성장시킨 실험군에서는 간장, 신장, 비장의 무게는 증가하였으나 다른 식이 군에서의 중량변화는 없었다. 혈청중 AST, ALT, LDH, ALP 활성은 lard , alcohol을 첨가한 식이군(II, III군)에 비해 유의한 감소를 나타내었다. 이상의 실험 결과로 보아 Lard 와 Alcohol의 만성적인 섭취는 실험동물의 간기능에 손상을 유발하여 혈청 중 AST, ALT, ALP, LDH활성이 증가하였으나 인삼추출물을 첨가한 실험군에서는 위와 같은 효소의 활성이 유의적으로 감소하였다. 따라서 인삼추출물은 고지방식이로 인한 고지혈증을 개선함으로써 간조직의 손상을 예방하여 줄것으로 생각되어 진다.

  • PDF

흰쥐 조직에 존재하는 Inositol(1,4,5) triphosphate 3-Kinase의 면역학적 특성 (Immunological Gharacterization of Inositol(1,4,5) triphosphate 3-Kinase in Rat Tissues)

  • 김재웅;이서구
    • 한국식품영양학회지
    • /
    • 제6권1호
    • /
    • pp.37-46
    • /
    • 1993
  • Brain, heart, liver, lung, kidney and thymus etc. 12 organs were removed and homogenized from Dawley-Sprague rats after suffocation. After fractionation of the tissue cytosols, enzymatic activities of the key enzymes in metabolic inositol phosphates cycle, PLC, IPSK and Ins(1,4,5) P35-phosphatase, were measured respectively. Hybridoma monoclones producing anti-lP3K murine monoclonal antibodies were obtained by the fusion of SP2/Ag 0-14 and spleen cells of mouse immunized with purified 53KDa IPSK, screening and cloning procedures. 18 cloned hybridoma cells were obtained, background due to nonspecific binding was very low with 10 clones. These Abs were purified from ascitic fluids by using affi-gel 15, and determined subtype of Abs. When immunoreactivities for rat tissues IP3K were exercised by adding the mixed Abs of 19Gl and 19G2b, they showed an overall similarity with noncompetitive inhibition. Brain tissue has high sensitivity for anti-lP3K Ab, whereas heart tissue has very low activity. In kinetic parameters Km value was 1.58 mM and Vmx value was 5.41umol/min/ml, respectively Only one form of 40 KDa IPSK was detected in heart tissues, however rat brain contains at least three immunologically distinct IP3K (53, 51 and 40 KDa) in western blot analysis. Of them 53 KDa protein was major enzyme in enzymatic activity. Northern blot analysis with 32P-labeled CDNA probe which encodes 1.8 Kb IPSK gene was performed. These results suggest that IPSK are regulated at transcriptional level during rat tissue development.

  • PDF

Analysis of Functional Genes in Carbohydrate Metabolic Pathway of Anaerobic Rumen Fungus Neocallimastix frontalis PMA02

  • Kwon, Mi;Song, Jaeyong;Ha, Jong K.;Park, Hong-Seog;Chang, Jongsoo
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제22권11호
    • /
    • pp.1555-1565
    • /
    • 2009
  • Anaerobic rumen fungi have been regarded as good genetic resources for enzyme production which might be useful for feed supplements, bio-energy production, bio-remediation and other industrial purposes. In this study, an expressed sequence tag (EST) library of the rumen anaerobic fungus Neocallimastix frontalis was constructed and functional genes from the EST library were analyzed to elucidate carbohydrate metabolism of anaerobic fungi. From 10,080 acquired clones, 9,569 clones with average size of 628 bp were selected for analysis. After the assembling process, 1,410 contigs were assembled and 1,369 sequences remained as singletons. 1,192 sequences were matched with proteins in the public data base with known function and 693 of them were matched with proteins isolated from fungi. One hundred and fifty four sequences were classified as genes related with biological process and 328 sequences were classified as genes related with cellular components. Most of the enzymes in the pathway of glucose metabolism were successfully isolated via construction of 10,080 ESTs. Four kinds of hemi-cellulase were isolated such as mannanase, xylose isomerase, xylan esterase, and xylanase. Five $\beta$-glucosidases with at least three different conserved domain structures were isolated. Ten cellulases with at least five different conserved domain structures were isolated. This is the first solid data supporting the expression of a multiple enzyme system in the fungus N. frontalis for polysaccharide hydrolysis.

Effect of Changes in the Composition of Cellular Fatty Acids on Membrane Fluidity of Rhodobacter sphaeroides

  • Kim, Eui-Jin;Lee, Jeong K.
    • Journal of Microbiology and Biotechnology
    • /
    • 제25권2호
    • /
    • pp.162-173
    • /
    • 2015
  • The cellular fatty acid composition is important for metabolic plasticity in Rhodobacter sphaeroides. We explored the effects of changing the cellular ratio of unsaturated fatty acids (UFAs) to saturated fatty acids (SFAs) in R. sphaeroides by overexpressing several key fatty acid biosynthetic enzymes through the use of expression plasmid pRK415. Bacteria containing the plasmid pRKfabI1 with the fabI1 gene that encodes enoyl-acyl carrier protein (ACP) reductase showed a reduction in the cellular UFA to SFA ratio from 4 (80% UFA) to 2 (65% UFA) and had decreased membrane fluidity and reduced cell growth. Additionally, the ratio of UFA to SFA of the chromatophore vesicles from pRKfabI1-containing cells was similarly lowered, and the cell had decreased levels of light-harvesting complexes, but no change in intracytoplasmic membrane (ICM) content or photosynthetic (PS) gene expression. Both inhibition of enoyl-ACP reductase with diazaborine and addition of exogenous UFA restored membrane fluidity, cell growth, and the UFA to SFA ratio to wild-type levels in this strain. R. sphaeroides containing the pRKfabB plasmid with the fabB gene that encodes the enzyme β-ketoacyl-ACP synthase I exhibited an increased UFA to SFA ratio from 4 (80% UFA) to 9 (90% UFA), but showed no change in membrane fluidity or growth rate relative to control cells. Thus, membrane fluidity in R. sphaeroides remains fairly unchanged when membrane UFA levels are between 80% and 90%, whereas membrane fluidity, cell growth, and cellular composition are affected when UFA levels are below 80%.

생강의 주성분인 6-Shogaol이 인체 약물대사효소인 Cytochrome P450에 미치는 영향 (Effects of 6-Shogaol, A Major Component of Zingiber officinale Roscoe, on Human Cytochrome P450 Enzymes in vitro)

  • 김진
    • 한국약용작물학회지
    • /
    • 제24권1호
    • /
    • pp.7-13
    • /
    • 2016
  • Background : Ginger has been extensively used in foods and traditional medicines in Asian countries. Despite its frequent consumption in daily life, the mechanism of potential interactions between ginger components-drug has not been examined. To elucidate the mechanism of governing the effects of 6-shogaol, a primary constituent of dried ginger, on human cytochrome P450 (CYP) isoenzymes an incubation studies were carried out using pooled human liver microsome (HLM). Methods and Results : CYP isoenzyme specific substrate was incubated with multiple concentrations of inhibitor, HLM and cofactors. 6-shogaol showed a potent inhibitory effect on CYP2C9, CYP1A2 and CYP2C19 with half maximal inhibitory concentration ($IC_{50}$) values of 29.20, 20.68 and $18.78{\mu}M$ respectively. To estimate the value of the inhibition constant ($K_i$) and the mode of inhibition, an incubation study with varying concentrations of each CYP isoenzyme-specific probe was performed. 6-shogaol inhibited CYP2C9 and CYP2C19 noncompetitively ($K_i=29.02$ and $19.26{\mu}M$ respectively), in contrast, the inhibition of CYP1A2 was best explained by competitive inhibition ($K_i=6.33{\mu}M$). Conclusions : These findings suggest that 6-shogaol may possess inhibitory effects on metabolic activities mediated by CYP1A2, CYP2C9 and CYP2C19 in humans.

Cytochrome P-450 의존성 radical 전달에 의한 Benzene, Toluene, Xylene의 대사기전 연구 (A Study on the metabolism mechanism of Benzene, Toluene and Xylene by Cytochrome P-450 dependent radical-mediated)

  • 김기웅;장성근;김양호;문영한
    • Toxicological Research
    • /
    • 제11권2호
    • /
    • pp.205-213
    • /
    • 1995
  • This study was undertaken to investigate the effects of organic solvents on xenobiotic metabollzing enzyme system in vivo by meaas of experimental conditions i.e. (1) single group which was treated by benzene (B), toluene (T) and xylene (X), respectively, (2) combination group which was treated by mixture of benzene+toluene (BT), benzene+xylene (BX), and toluene+xylene (TX), respectively, (3) mixture group which was treated by benzene+ toluene+xylene mixture (M), and to interpreat the interaction between the organic solvents metabolizing enzymes. 1. The contents of cytochrome P-450 in liver microsomes were increased (p < 0.01) in organic solvents treated groups, and the contents of cytochrome P-450 were increased by following order of B < T < M < BT=BX < X < TX. 2. The activity of cytochrome P-450 dependent AHHase was significantly higher in organic solvents treated groups than in control group (p < 0.01), and the activity of AHHase was increased by following order of B < T < BT=BX=TX=xylene < M. 3. The activity of NADPH P-450 reductase was significantly higher in organic solvents treated groups than in control group (p < 0.01), and the order of M < combinated group < X < T

  • PDF

Insulin Induces Transcription of VEGF in Arnt-dependent but HIF-l$\alpha$-Independent Pathway

  • Park, Youngyeon;Park, Hyuns-Sung
    • 한국응용약물학회:학술대회논문집
    • /
    • 한국응용약물학회 2001년도 추계학술대회 및 정기총회
    • /
    • pp.100-100
    • /
    • 2001
  • Hypoxia is a pathophysiological condition that occurs during injury, ischemia, and stroke. Hypoxic stress induces the expression of genes associated with increased energy flux, including the glucose transporters Glutl and Glut3, several glycolytic enzymes, nitric oxide synthase, erythropoietin and vascular endothelial growth factor. Induction of these genes is mediated by a common basic helix-loop-helix PAS transcription complex, the hypoxia-inducible factor-l${\alpha}$ (HIF-1${\alpha}$)/ aryl hydrocarbon receptor nuclear translocator (ARNT). Insulin plays a central role in regulating metabolic pathways associated with energy storage and utilization. It triggers the conversion of glucose into glycogen and triglycerides and inhibits gluconeogenesis. Insulin also induced hypoxia-induced genes. However the underlying mechanism is unestablished. Here, we study the possibility that transcription factor HIF-1${\alpha}$ is involved in insulin-induced gene expression. We investigate the mechanism that regulates hypoxia-inducible gene expression In response to insulin We demonstrate that insulin increases the transcription of hypoxia- inducible gene. Insulin-induced transcription is not detected in Arnt defective cell lines. Under hypoxic condition, HIF- l${\alpha}$ stabilizes but does not under insulin treatment. Insulin-induced gene expression is inhibited by presence of PI-3 kinase inhibitor and Akt dominant negative mutant, whereas hypoxia-induced gene expression is not. ROS inhibitor differently affects insulin-induced gene expressions and hypoxia-induced gene expressions. Our results demonstrate that insulin also regulates hypoxia-inducible gene expression and this process is dependent on Arnt. However we suggest HIF-l${\alpha}$ is not involved insulin-induced gene expression and insulin- and hypoxia- induces same target genes via different signaling pathway.

  • PDF

Metabolic Engineering of Indole Glucosinolates in Chinese Cabbage Plants by Expression of Arabidopsis CYP79B2, CYP79B3, and CYP83B1

  • Zang, Yun-Xiang;Lim, Myung-Ho;Park, Beom-Seok;Hong, Seung-Beom;Kim, Doo Hwan
    • Molecules and Cells
    • /
    • 제25권2호
    • /
    • pp.231-241
    • /
    • 2008
  • Indole glucosinolates (IG) play important roles in plant defense, plant-insect interactions, and stress responses in plants. In an attempt to metabolically engineer the IG pathway flux in Chinese cabbage, three important Arabidopsis cDNAs, CYP79B2, CYP79B3, and CYP83B1, were introduced into Chinese cabbage by Agrobacterium-mediated transformation. Overexpression of CYP79B3 or CYP83B1 did not affect IG accumulation levels, and overexpression of CYP79B2 or CYP79B3 prevented the transformed callus from being regenerated, displaying the phenotype of indole-3-acetic acid (IAA) overproduction. However, when CYP83B1 was overexpressed together with CYP79B2 and/or CYP79B3, the transformed calli were regenerated into whole plants that accumulated higher levels of glucobrassicin, 4-hydroxy glucobrassicin, and 4-methoxy glucobrassicin than wild-type controls. This result suggests that the flux in Chinese cabbage is predominantly channeled into IAA biosynthesis so that coordinate expression of the two consecutive enzymes is needed to divert the flux into IG biosynthesis. With regard to IG accumulation, overexpression of all three cDNAs was no better than overexpression of the two cDNAs. The content of neoglucobrassicin remained unchanged in all transgenic plants. Although glucobrassicin was most directly affected by overexpression of the transgenes, elevated levels of the parent IG, glucobrassicin, were not always accompanied by increases in 4-hydroxy and 4-methoxy glucobrassicin. However, one transgenic line producing about 8-fold increased glucobrassicin also accumulated at least 2.5 fold more 4-hydroxy and 4-methoxy glucobrassicin. This implies that a large glucobrassicin pool exceeding some threshold level drives the flux into the side chain modification pathway. Aliphatic glucosinolate content was not affected in any of the transgenic plants.

Molecular characterization and expression of cytosolic OASTL control cysteine metabolism in Mimosa pudica L.

  • Harun-Ur-Rashid, Md.;Masakazu, Fukuta;Hossain, Md. Amzad;Oku, Hirosuke;Iwasaki, Hironori;Oogai, Shigeki;Anai, Toyoaki
    • 한국작물학회:학술대회논문집
    • /
    • 한국작물학회 2017년도 9th Asian Crop Science Association conference
    • /
    • pp.224-224
    • /
    • 2017
  • In plants, cysteine(Cys) is decisive for protein and glutathione that acts as an indispensable sulfur grantor for methionine and many other sulfur containing secondary products. Cys formation is involved in the consecutive two reactions using two enzymes-serine acetyl transferase (SAT) and O-acetylserine (thiol)lyase (OASTL) and appeared in plant cytosol, chloroplast and mitochondria. OASTL is able to produce mimosine with 3-hydroxy-4-pyridone (3H4P) in lieu of $H_2S$ for Cys. In this report, we describe the first time cloning, purification and characterization of cytosolic(cy)OASTL from M. pudica and its expression in Escherichia coli and try to find out the cross link between this OASTL and the mimosine formation and to elucidate the metabolic role of cy-OASTL in M. pudica. The purified recombinant protein was 34.7 KDa. The optimum reaction pH and temperature was 6.5 and $50^{\circ}C$, respectively. The Michaelis constant (Km) and the Vmax value of the enzyme was $252{\pm}25{\mu}M$ and $57{\pm}3{\mu}M\;cysteine\;min^{-1}\;{\mu}g\;protein^{-1}$ for sulfide and $159{\pm}21{\mu}M$ and $58{\pm}2.4{\mu}M\;cysteine\;min^{-1}\;{\mu}g\;protein^{-1}$ for OAS subsequently. After cleaving the His-tag, we tried to observe cy-OASTL to form mimosine with appropriate substrate but it was not successful. It may be concluded that cy-OASTL of the present study is only Cys specific, not mimosine.

  • PDF