• Title/Summary/Keyword: Mesozoic volcanic rocks

Search Result 25, Processing Time 0.019 seconds

Study on the Metallogenic Classification Relating to Igneous Activity in the Ogcheon Geosynclinal Zone, Korea (옥천지향사대(沃川地向斜帶)의 화성활동(火成活動)에 의한 광화작용(鑛化作用)의 유형(類型)에 관(關)한 연구(硏究))

  • Lee, Dai Sung;Chi, Jeong Mann;Lee, Dai Woon
    • Economic and Environmental Geology
    • /
    • v.13 no.3
    • /
    • pp.167-184
    • /
    • 1980
  • The granitic plutons associated with Ogcheon geosynclinal zone can be grouped into three different subzones; SE-Subzone for the migmatitic and schistose granites of the southeast margin, 101-181m.y. old; NW-Subzone for those of the northwest margin, 112-163m. y. old; and C-Subzone for those of central part of the zone, 63-183m.y. old. The intrusives in C-Subzone are further subdivided into the older, adamellite to granodiorite (148-183m.y. old) and the younger, perthitic granites (63-106m,y. old). The metallogenic distribution of South Korea suggests that, in the Ogcheon Zone, it is possible to delineate an elongated polymetallogenic province in the general orientation of the zone intimately related with the migmatite and plutonic zones mentioned. Moreover, the mineralization in the province was basically controlled by the patterns of local geology involving country rocks and related igneous bodies, that permit subdivision of the province into the following three parts: Northeast (NE) Province consists dominantly of thick Paleozoic calcareous sediments; Middle (M) Province is characterized by predominant argillaceous and partly calcareous sediments of Precambrian to Late Paleozoic age; and Southwest (SW) Province consisting mainly of volcanic and arenaceous sediments of Mesozoic age. The three different plutonic zones with three different country rock provinces above mentioned make a combination which consists of nine classes. Each class can be assumed to be characterized by specific mineralization type. In order to classify the mineralization types, the present study sampled twenty six ore deposits and mineralized areas in Ogcheon zone as shown figure 2; eight ore deposits from plutonic SE-Subzone, ten from the plutonic NE-Subzone and eight from the plutonic C-Subzone. The characteristics of the classes are as follows: NE-SE is predominant in Au-Ag vein and Sn-migmatite of katazonal occurrence; NE-C is most productive in Pb-Zn and remarkable in Fe contact deposit in mesozone and partly Pb-Zn-Cu skarn in limestone and subordinate in mesozone and partly Pb-Zn pipes; M-SE is considerable in Au-Ag vein and rare elements (Nb, Ta, etc.) of pegmatite; M-C is predominant in F-veins in epizone and Mo-W, Fe, Cu veins occur in replacement type; M-NW is productive in Fe metamorphic and skarn types, partly remarkable in Cu, Pb-Zn contact; SW-SE is barren in mineralization related to Jurassic igneous rocks; SW-C is predominant in alunite and pyrophyllite in tuffs; and SW-NW is scarece in Pb-Zn, Cu, As and Au-Ag veins.

  • PDF

Geochronological and Geotectonic Implications of the Serpentinite Bodies in the Hongseong Area, Central-western Korean Peninsula (한반도 중서부 홍성지역 내에 분포하는 사문암체의 지질연대학 및 지구조적 의미)

  • Kim, Sung Won;Park, Seung-Ik
    • Economic and Environmental Geology
    • /
    • v.49 no.4
    • /
    • pp.249-267
    • /
    • 2016
  • The Hongseong area of the central-western Korean Peninsula is considered to be a part of collision zone that is tectonically correlated to the Qinling-Dabie-Sulu belt of China. The area includes the elliptical-shaped serpentinized ultramafic bodies, together with mafic rocks. The studied bodies are in contact with the surrounded Neoproterozoic alkali granites at the Baekdong and Wonnojeon bodies and the Paleoproterozoic Yugu gneiss at the Bibong body. The Baekdong body contains the blocks of the Neoproterozoic alkali granites and the Late Paleozoic metabasites. The Bibong body also includes the Neoproterozoic alkali granite blocks. The Mesozoic intrusive rocks are also recognized at the Baekdong, Wonnojeon and Bibong bodies. On the other hand, the Early Cretaceous volcanic rocks are occurred at the Bibong body. The detrital zircon SHRIMP U-Pb ages of the serpentinites at three bodies range variously from Neoarchean to Middle Paleozoic at the Baekdong body, and from Neoarchean to Early Cretaceous at the Wonnojeon and Bibong bodies. Although serpentinization does not generally produce minerals suitable for direct isotopic dating, the youngest Middle Paleozoic age at the Baekdong body and the Early Cretaceous age at the Wonnojeon and Bibong bodies indicate the possible upper age limit for the (re)serpentinization. Especially, the Early Cretaceous serpentinization ages may be related to the widespread Early Cretaceous igneous activity in the central-southern Korean Peninsula. Age results for the serpentinite bodies and the included blocks of the studied serpentinized ultramafic bodies in the Hongseong area, therefore, provide several possible interpretations for the serpentinization ages of the ultramafic rocks as well as the geotectonic implications of serpentinization, requiring more detailed study including other serpentinized ultramafic bodies in the Hongseong area.

Acid Drainage and Damage Reduction Strategy in Construction Site: An Introduction (건설현장 산성배수의 발생현황 및 피해저감대책)

  • Kim, Jae-Gon
    • Economic and Environmental Geology
    • /
    • v.40 no.5
    • /
    • pp.651-660
    • /
    • 2007
  • Acid drainage has been recognized as an environmental concern in abandoned mine sites for long time. Recently, the environmental and structural damage by acid drainage is a current issue in construction sites in Korea. Here, the author introduces the type of damages by acid drainage in construction sites and emphasizes the importance of geoscience discipline in solving the problem. Metasedimentary rock of Okcheon group, coal bed of Pyeongan group, Mesozoic volcanic rock. and Tertiary sedimentary and volcanic rocks are the major rock types with a high potential for acid drainage upon excavation in Korea. The acid drainage causes the acidification and heavy metal contamination of soil, surface water and groundwater, the reduction of slope stability, the corrosion of slope structure, the damage on plant growth, the damage on landscape and the deterioration of concrete and asphalt pavement. The countermeasure for acid drainage is the treatment of acid drainage and the prevention of acid drainage. The treatment of acid drainage can be classified into active and passive treatments depending on the degree of natural process in the treatment. Removal of oxidants, reduction of oxidant generation and encapsulation of sulfide are employed for the prevention of acid drainage generation.

Contrasting Styles of Gold and Silver Mineralization in the Central and Southeastern Korea (한국 중부와 동남부지역 금·은광화작용의 성인적 특성)

  • Choi, Seon-Gyu;Choi, Sang-Hoon
    • Economic and Environmental Geology
    • /
    • v.28 no.6
    • /
    • pp.587-597
    • /
    • 1995
  • Two distinct precious-metal mineralizations actively occur at central and southeastern Korea which display consistent relationships among geologic, geochemical and genetic environments. A large number of preciousmetal vein deposits in the central Korea occur in or near Mesozoic granite batholiths elongated in a NE-SW direction. Whereas, gold and/or silver deposits in the southeastern Korea occur within Cretaceous volcanic and sedimentary rocks. However, most of the precious-metal deposits in the southeastern Korea show characteristics of the silver-rich deposits than the gold-rich deposits in the central Korea. Two epochs of main igneous activities are recognized: a) Jurassic Daebo igneous activity between 121 and 183 Ma, and b) Cretaceous Bulgugsa igneous activity between 60 and 110 Ma. Precious-metal mineralization took place between 158 and 71 Ma, coinciding with portions of the two magmatic activities. Contrasts in the style of mineralization, together with radiometric age data and differences in geologic settings reflect the genetically variable natures of hydrothermal activities from middle Jurassic to late Cretaceous time. The compilation and re-evaluation of these data suggest that the genetic types of hydrothermal precious-metal vein deposits in the central and southeastern Korea varied with time. The Jurassic and early Cretaceous mineralizations are characterized by the Au-dominant type, but tend to change to the Au-Ag and/or Ag-dominant types at late Cretaceous. The Jurassic Au-dominant deposits commonly show several characteristics; prominent associations with pegmatites, simple massive vein morphologies, high fmeness values in ore-concentrating parts, and a distinctively simple ore mineralogy such as Fe-rich sphalerite, galena, chalcopyrite, Au-rich electrum, pyrrhotite and/or pyrite. The Cretaceous precious-metal deposits are generally characterized by some- features such as complex vein morphologies, low to medium fmeness values in the ore concentrates, and abundance of ore minerals including Ag sulfosalts, Ag sulfides, Ag tellurides and native silver. Mineralogical and fluid inclusion studies indicate that the Jurassic Au-dominant deposits in the central area were formed at the high temperature (about $300^{\circ}$ to $500^{\circ}C$) and pressure (about 4 to 5 kbars), whereas mineralizations of the Cretaceous Au-Ag and Ag-dominant deposits were occurred at the low temperature (about $200^{\circ}$ to $350^{\circ}C$) and pressure (<0.5 kbars) from the ore fluids containing more amounts of less-evolved meteoric waters.

  • PDF

Distribution of Agalmatolite Mines in South Korea and Their Utilization (한국의 납석 광산 분포 현황 및 활용 방안)

  • Seong-Seung Kang;Taeyoo Na;Jeongdu Noh
    • The Journal of Engineering Geology
    • /
    • v.33 no.4
    • /
    • pp.543-553
    • /
    • 2023
  • The current status of domestic a agalmatolite mines in South Korea was investigated with a view to establishing a stable supply of agalmatolite and managing its demand. Most mined agalmatolite deposits were formed through hydrothermal alteration of Mesozoic volcanic rocks. The physical characteristics of pyrophyllite, the main constituent mineral of agalmatolite, are as follows: specific gravity 2.65~2.90, hardness 1~2, density 1.60~1.80 g/cm3, refractoriness ≥29, and color white, gray, grayish white, grayish green, yellow, or yellowish green. Among the chemical components of domestic agalmatolite, SiO2 and Al2O3 contents are respectively 58.2~67.2 and 23.1~28.8 wt.% for pyrophyllite, 49.2~72.6 and 16.5~31.0 wt.% for pyrophyllite + dickite, 45.1 and 23.3 wt.% for pyrophyllite + illite, 43.1~82.3 and 11.4~35.8 wt.% for illite, and 37.6~69.0 and 19.6~35.3 wt.% for dickite. Domestic agalmatolite mines are concentrated mainly in the southwest and southeast of the Korean Peninsula, with some occurring in the northeast. Twenty-one mines currently produce agalmatolite in South Korea, with reserves in the order of Jeonnam (45.6%) > Chungbuk (30.8%) > Gyeongnam (13.0%) > Gangwon (4.8%), and Gyeongbuk (4.8%). The top 10 agalmatolite-producing mines are in the order of the Central Resources Mine (37.9%) > Wando Mine (25.6%) > Naju Ceramic Mine (13.4%) > Cheongseok-Sajiwon Mine (5.4%) > Gyeongju Mine (5.0%) > Baekam Mine (5.0%) > Minkyung-Nohwado Mine (3.3%) > Bugok Mine (2.3%) > Jinhae Pylphin Mine (2.2%) > Bohae Mine. Agalmatolite has low thermal conductivity, thermal expansion, thermal deformation, and expansion coefficients, low bulk density, high heat and corrosion resistance, and high sterilization and insecticidal efficiency. Accordingly, it is used in fields such as refractory, ceramic, cement additive, sterilization, and insecticide manufacturing and in filling materials. Its scope of use is expanding to high-tech industries, such as water treatment ceramic membranes, diesel exhaust gas-reduction ceramic filters, glass fibers, and LCD panels.