• Title/Summary/Keyword: Mesotrophic

Search Result 74, Processing Time 0.024 seconds

Estimation of Water Quality and Trophic State in the Hapcheon Lake (합천호 수질 및 영양단계에 대한 평가)

  • Choi, Hyoung-Sub;Cho, In-Cheol;Byun, Jong-Hwan;Moon, Byung-Hyun;Heo, Jong-Soo
    • Korean Journal of Environmental Agriculture
    • /
    • v.22 no.1
    • /
    • pp.1-6
    • /
    • 2003
  • The yearly average water qualities of the Whang river, which flows into the Hapcheon lake, were COD $3.1{\sim}4.2\;mg/L$, T-N $2.460{\sim}3.550\;mg/L$ and T-P $0.111{\sim}0.201\;mg/L$ during $1996{\sim}2001$. The yearly average COD concentration of Hapcheon lake was increased from 1.9 mg/L (in 1996) to 2.7 mg/L (in 2000). However, T-N and T-P concentration of Hapcheon lake did not show increasing trend over the 6 year period During $1996{\sim}2001$, the yearly average concentrations of T-N, T-P were $1.383{\sim}1.792\;mg/L$, $0.018{\sim}0.023\;mg/L$ respectively. The correlation coefficients between chlorophyll ${\alpha}$ and T-N, T-P, rainfall intensity, water temperature were 0.382, 0.372, 0.589, and 0.526, respectively. Therefore, the rainfall and water temperature appeared to play an important role far the variations of chlolophyll ${\alpha}$ concentration in the Hapcheon lake. Trophic state of the Hapcheon lake were evaluated to be in the range of mesotrophic to eutrophic.

The Trophic State Assessment using Biochemical Composition in the Surface Sediments, the Southern Coast of Korea (표층 퇴적물의 생화학적 조성을 이용한 남해연안 영양상태 평가)

  • Cho, Yoon-Sik;Kim, Yoon-Bin;Lee, Won-Chan;Hong, Sok-Jin;Lee, Suk-Mo
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.19 no.2
    • /
    • pp.101-110
    • /
    • 2013
  • In order to classify the trophic state and environmental quality of marine coastal system, an approach using the characteristics and biochemical composition in the sediments can be available. This research, including 25 coastal bay, belong to 131 stations, was carried out along the south coasts of Korea in February 2007. Type of sediment, total ogranic carbon, total nitrogen, phytopigments and biochemical composition(proteins, lipids, carbohydrates) were analyzed. Result from Multi-dimensional Scaling(MDS) ordination indicates that four group can be identified. The result of ANOVA with tukey test shows that the concentrations of proteins, carbohydrates and biopolymeric carbon were significantly different to four groups. We propose the trophic state classification for these groups using the biochemical composition of sediment organic matter. I group(Masan, Jinhae, Haengam) has been defined as hypertrophic state, II group(Tongyeong, Goseong;Jaran, Geoje et al.), as eutrophic; III group(Gamak, Deungnyang, Yeoja et al.), as mesotrophic and IV group(Sinan, Jindo, Muan), as oligotrophic. On the basis of results reported in this study, the biochemical composition of sediment organic matter could be considered an useful and sensitive tool for the classification of the trophic state of marine coastal systems.

Bacterial Abundances and Enzymatic Activities in the Pore Water of Media of Artificial Floating Island in Lake Paro (파로호에 설치된 인공식물섬 식생기반재의 공극수에서 세균 분포와 체외효소활성도)

  • Kim, Yong-Jeon;Hur, Jai-Kyou;Nam, Jong-Hyun;Kim, In-Seon;Choi, Kyoung-Suk;Choi, Seung-Ik;Ahn, Tae-Seok
    • Korean Journal of Microbiology
    • /
    • v.43 no.1
    • /
    • pp.40-46
    • /
    • 2007
  • For restoration of disturbed ecosystem in Lake Paro, artificial floating island (AFI) was installed. Even though the lake water was oligo-mesotrophic, the macrophytes, such as Iris ensata, Iris pseudoacorus, Phragmites communis were growing well in the rubberized coconut fiber media. For elucidating this process, total bacterial numbers, active bacterial numbers and exoenzymatic activities of ${\beta}-glucosidase$ and phosphatase of pore water of media and lake water were analyzed. The average of total bacterial numbers, active bacterial numbers and exoenzymatic activities of ${\beta}-glucosidase$ and phosphatase were $28.6{\times}10^{6}\;cells/ml,\;22.7{\times}10^{6}\;cells/ml,\;452.9nM/L/hr,\;and\;16381.9nM/L/hr$ which were 10, 15, 22 and 38 times higher than those of lake water, respectively. Moreover, the total phosphorus and total nitrogen concentration of media showed high values of 0.82 mg/L and 7.0 mg/L, respectively, while those of lake water 0.07 mg/L and 2.3 mg/L. This results suggest that the bacteria was playing an important role for restoration of disturbed ecosystem with newly created microbial ecosystem in media of artificial floating island.

Evaluation of Water Pollution Characteristics of Major Lakes in Northern Gyeonggi-do Province (경기북부지역 주요 호소수의 수질오염특성 평가)

  • Choi, Jeong-in;Im, Heung-bin;Jung, Eun-hee;Kim, Tae-yuel;Son, Yeong-geum;Ko, Sun-mi;Lee, Ho-jung;Oh, Jo-gyo
    • Journal of Environmental Health Sciences
    • /
    • v.44 no.4
    • /
    • pp.315-322
    • /
    • 2018
  • Objectives: A lake is a place used by many people, and compared to rivers it is easy for them to become polluted. The water quality in lakes and reservoirs has been worsening recently. The purpose of this study is to evaluate the water pollution characteristics of major lakes in northern Gyeonggi-do Province. Methods: Six lakes were selected as major lakes and were evaluated in terms of water pollution characteristics and eutrophication (as defined by results for $COD_{Mn}$, TOC, SS, Chl-a, T-N and T-P) over one year (from December 2016 through November 2017) in northern Gyeonggi-do Province. Results: The annual average $COD_{Mn}$ was found to be 3.1 mg/L in Onam, 3.6 mg/L in Sanjeong, 4.7 mg/L in Gisan, 4.8 mg/L in Ilsan, and 6.1 mg/L in Jangja. The results of the Korean trophic state index ($TSI_{KO}$ ) value indicated a eutrophic state ($TSI_{KO}$ 59.0) in Jangja lake. The other lakes were classified as being in a mesotrophic state ($TSI_{KO}$ of 38.1 in Sanjeong, 40.2 in Ilsan, 41.9 in Onam, 46.1 in Gisan, and 47.8 in Gomo). Conclusions: Ilsan Lake's water quality is being well maintained. Sanjeong, Onam, and Gisan are appropriate for use as agricultural water. Jangja lake requires efforts for water quality improvement and to prevent the inflow of non-point pollutant sources.

The Relation Between Water Quality and Structure of Aquatic Ecosystem in Agriculture Reservoir, Otae-ji (농업용저수지인 오태지의 수생태계구조와 수질과의 관련성)

  • Seo, Jung-Kwan;Lee, Hae-Jin;Jeong, Hyun-Gi;Tak, Bo-Mi;Lee, Jae-Kwan;Kim, In-Taek;Lee, Jong-Eun;Hwang, Ui-Wook
    • Journal of Environmental Science International
    • /
    • v.19 no.11
    • /
    • pp.1407-1421
    • /
    • 2010
  • This study was carried out to elucidate the relation between water quality and structure of the aquatic ecosystem in the agriculture reservoir Otae-ji from January to December in 2009. The proportion of forest was 46.98%, which means that non-point sources are major contributor of water pollution in this area. The annual mean COD(Chemical Oxygen Demand) in Otae-ji was $3.6mgL^{-1}$, indicating, level II of environmental standards and the trophic state was mesotrophic. Although total phosporus concentration in the reservoir was high in August due to large inflow of nutrients from outside the reservoir during monsoon season, there was no break out of significant algal bloom in the summer. The seasonal succession of phytoplankton showed that the dinophyta dominated in the the spring, chlorophyta in the summer, chrysophyta and chlorophyta in the autumn and chrysophyta in the winter. In case of zooplankton, rotifers dominated in the most seasons, but cladoceran(Bosmina longirostris) dominated in June and copepod(Nauplii) in August. The macrophyte plants showed diverse species compositon consisted of 3 varieties, 24 species, 23 genera, 15 families and 14 orders. The macroinvertebrates also showed various FFG(Functional Feeding Groups) such as GC(Gathering-Collector), P(Predator), SH(Shedder), FC(Filter-Collector) and PP(Plant-Piercer). Ecosystem stability analysis using aquatic insects was classified as Group I, which has high resilience and resistance indices. A total of 14 species of fish was collected but exotic species such as Lepomis macrochirus and Micropterus salmoides were not found in Otae-ji. In conclusion, the preservation of healthy food wed in the reservoir ecosystem is closely related to water quality management as well as effective prevention of algal bloom by helping good material circulation in aquatic ecosystems.

Characteristics of Marine Environment and Primary Productivity of Phytoplankton in the Seaweed Bed of Northwestern Coast of Jeju Island During Autumn 2014 (2014년 추계 제주 북서부 해조장에서 해양환경과 식물플랑크톤의 일차생산력 특성)

  • KWON, HYEONG KYU;YANG, HAN SOEB;YOON, YANG HO;CHOI, OK IN;CHOI, IM HO;OH, SEOK JIN
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.20 no.4
    • /
    • pp.180-191
    • /
    • 2015
  • Marine environmental characteristics and primary productivity of phytoplankton were investigated in seaweed bed of northwestern coast of Jeju Island during Autumn, 2014. The trophic state based on dissolved inorganic nitrogen and phosphorus was mesotrophic. The Redfield ratio was less than 16, indicating that nitrogen was the limiting factor for the growth of phytoplankton. Dissolved organic nitrogen and phosphorus accounts for 63 and 46% of the dissolved total nitrogen and phosphorus, respectively. Light utilization efficiency (${\alpha}$) and maximum photosynthetic capacity ($P_m{^B}$) were highest in the Donggwi (third-year marine forest), followed by Gonae (one-year marine forest), Biyangdo (natural seaweed bed) and Geumneung (whitening area). The primary productivity of phytoplankton in the Donggwi, Gonae and Biyangdo also was higher than that in the Geumneung. Although nitrogen is the limiting factor, enriched dissolved organic nitrogen might play an important role to maintain primary productivity. In addition, phytoplankton community through photosynthesis could produce about 14% of phytoplankton carbon in one hour. These results will be able to use the important information for material cycle and ecological valuation of seaweed bed.

Algal Bioassay for the Treated and Raw Wastewater in the Kyongan Stream (경안천에서 하수처리수와 생하수에 대한 algal bioassay)

  • Lee, Ok-Hee;Hwang, Soon-Jin;Cho, Kyung-Je;Shin, Jae-Ki
    • Korean Journal of Ecology and Environment
    • /
    • v.34 no.3 s.95
    • /
    • pp.192-198
    • /
    • 2001
  • The Kyongan Stream and the inlet part of Paltang Reservoir are under significant influence of the effluent of sewage wastewater treatment plant (SWTP) and untreated domestic wastewater (DOW). The fertility of wastewater was evaluated through bioassay using natural phytoplankton population diluted in five levels. The concentrations of $NH_4$, SRP and SRSi were positively correlated with the biomass of phytoplankton. P concentration showed stronger correlation (r = 0.959, p<0.001)than other nutrients. Compared with the initial concentrations, $NH_4$ concentrations in samples from SWTP and DOW decreased 96% and 7%, respectively during the cultivation, and those of SRSi decreased 97% and 60%. However, $NO_3$ concentrations in samples neither showed any particular change nor any increase. Chl-a concentration ranged between $20\;{\mu}g/l$ and $125\;{\mu}g/l$, which maximum value increased up to 83 times. Estimated from the relationship between chl-a and SRP, the P concentration that can maintain the biomass of algae under mesotrophic state (<25\;{mu}g$\;chl-a/l$) was $83\;{mu}g\; P/l$. The volume of flow to maintain this level solely by natural dilution was about $16{\sim}25$ times of in flowing volume in the stream. However, it is not feasible to tap water of such quantity. Therefore, it is imperative to build an advanced sewage wastewater treatment facility that can reduce $NH_4$ and SRP concentrations that promote the growth of phytoplankton in discharged water.

  • PDF

Variances of Environmental Factors during Water Bloom by Microcystis aeruginosa (K$\ddot{u}$tzing) K$\ddot{u}$tzing in Ilwol Reservoir, Suwon (수원 일월저수지에서 Microcystis aeruginosa (K$\ddot{u}$tzing) K$\ddot{u}$tzing 수화현상 시 환경요인들의 변화)

  • Kim, Ji-Eun;Park, Jung-Won;Jo, Ki-An;Kim, Si-Kyoon
    • Korean Journal of Ecology and Environment
    • /
    • v.46 no.2
    • /
    • pp.265-275
    • /
    • 2013
  • Variances in environmental factors were followed in Ilwol reservoir, Suwon, during bloom of Microcystis aeruginosa (K$\ddot{u}$tzing) K$\ddot{u}$tzing, Cyanophtya from August to October, 2011. M. aeruginosa dominated the water column throughout the investigation period. The water temperature varied from $25.7^{\circ}C$ to $28.4^{\circ}C$, pH 8.40 to 11.17, CODcr 4.25 to $72.00mg\;L^{-1}$, electrical conductivity 333.1 to $749.0{\mu}g\;cm^{-1}$, and Chl-a 22 to $185mg\;L^{-1}$. In particular, the high levels of CODcr is likely indicate high contribution of autochthonous organic matters in the reservoir. TN varied from 28.86 to $56.75mg\;L^{-1}$, TP 0.20 to $1.24mg\;L^{-1}$, Fe 0.11 to $1.05mg\;L^{-1}$, and Si 3.13 to $7.46mg\;L^{-1}$. These increases imply constant accumulation in Ilwol reservior, and reinforce the idea of autochthonous organic matters input in the reservoir. The Korea Trophic Status Index ($TSI_KO$) varied from 37.19 to 147.22. Trophic levels varied from mesotrophic to hypertrophic level, and differed spatio-temporally. Therefore, it is concluded that $TSI_KO$ is useful for analyzing trophic status of reservoirs.

A Scheme of Effective Water Quality Management on Lake Okjeoung (옥정호의 효율적인 수질관리방안)

  • Lee, Yo-Sang;Kim, U-Gu
    • Journal of Korea Water Resources Association
    • /
    • v.34 no.5
    • /
    • pp.487-497
    • /
    • 2001
  • Investigated data on Lake Okjeong were used for the simulation of water quality. According to the simulation results, the effective scheme of water quality management on reservoir has been proposed. It has been recognized that the water quality of Lake Okjeong is under eutrophic and mesotrophic condition even though there are seasonal variation. The water quality of lake is mainly affected by the inflow of pollutant load from watershed. Therefore, to estimate and quantify the accurate amounts of pollutants flowing into reservoir is absolutely necessary for the effective management of water quality on Lake Okjeong. When the pollutant load measured during 7 different rainy periods in 1999 was compared with total pollutant load in 1999. TN and TP measured during 7 different rainy periods showed almost 50% of total pollutant load. In case of SS, it was 72.8%. On the other hand, the rainfall amount measured during the 7 different rainy periods was about 17.5% of total rainfall amount in 1999. Release rate of TP shows 11.92 mg/L at fish farm site and 0.2∼1.9 mg/L at monitoring station of water quality on Lake Okjeong, and which is considered to be less than that of other foreign reservoirs under the circumstances of anoxic condition. For the effective management of water quality on Lake Okjeong. WASP5 water quality simulation model has been applied and verified, and the verified model was used to propose the effective scheme of water quality management. In this case, 6 different scenarios were applied, by changing the amount of inflow of pollutant load in each subbasin. The most effective scheme has turned out that pollutant load generated from Imsil and Gwanchon subbasin should be reduced, and the best way to improve the water a quality is to reduce the pollutant load at every subbasin. According to the simulation result, wastewater treatment facility should be located at every subbasin.

  • PDF

Analysis of Water Quality Characteristics According to Short-term Fluctuation of Water Level in the New Dam: Focused on the Upstream Watershed of Yeongju Multipurpose Dam (신규 댐 건설 전후의 수질변동 분석: 영주댐 상류유역을 중심으로)

  • Lee, Saeromi;Park, Jae Roh;Hwang, Tae Mun;Ahn, Chang Hyuk
    • Journal of Korean Society on Water Environment
    • /
    • v.36 no.5
    • /
    • pp.431-444
    • /
    • 2020
  • The relationship between dam construction and water quality has recently come to be considered an important issue. A dam is a physical factor which causes changes to the river system around it. Considering these points, this study was conducted to obtain basic data by analyzing the relationship between water level fluctuations and water quality parameters in the short-term. In terms of methodology, the new construction of the Yeongju Dam (M5) in 2016 was divided into Stage 1 as the lotic system and Stage 2 as the lentic system, with four years in each period, and the water level fluctuations and water quality were analyzed using official data. As a result of this study, M5, a stagnant area in which organic matter and nutrients accumulate, was found to be an important factor in water quality management. In addition, the water level changed rapidly (0.9±0.2 m → 10.9±7.1 m) as the river environment condition was converted from the lotic system to the lentic system. In addition, water quality parameters such as BOD, COD, TOC, and Chl-a significantly changed in the short-term. Further, since the transport of organic matter and nutrients occurred well in the lotic system, sedimentation was expected to be dominant in the lentic system. Therefore, it was determined that when the river flow is blocked, autochthonous organic matter is an important factor for long-term water quality management in the future. This process can increase the trophic state of the water body. As a result of this study, the TSIKO value was converted from mesotrophic in Stage 1 to eutrophic in Stage 2. Eventually, short-term changes in the river environment will affect not only changes in water level but also changes in water quality. Thus, a comprehensive and strategic approach is needed for long-term water quality management in the future.