• Title/Summary/Keyword: Mesophase pitch

Search Result 64, Processing Time 0.021 seconds

Synthesis and Characteristics of Hydxoxypropyl Celluloses Containing Cholesteryl and Acryloyl Groups (콜레스테릴과 아크릴로일 그룹을 지닌 하이드록시프로필 셀룰로오스들의 합성 및 특성)

  • 김장훈;정승용;마영대
    • Polymer(Korea)
    • /
    • v.28 no.1
    • /
    • pp.92-102
    • /
    • 2004
  • (6-Cholesteryloxycarbonylpentoxypropyl)celluloses (CHPCs) with degree of esterification (DE) ranging from 2.25 to 2.91 were synthesized by reacting hydroxypropyl cellulose with 6-cholesteryloxycarbonylpentanoyl chloride. The acrylic esters of CHPCs (CHPCEs) and their photocrosslinked films with liquidcrystalline order were also synthesized. The thermotropic properties of mesophase for both uncrosslinked and crosslinked samples and the swelling behavior of the crosslinked samples in acetone were investigated. The hydroxypropyl cellulose exhibited an enantiotropic cholesteric phas, while all the uncrosslinked cholesterylbearing samples exhibited a monotropic cholesteric phases; the 6-cholesteryloxycarbonylpentanoyl chloride also showed a monotropic smectic phase. The hydroxypropyl cellulose formed a right-handed helix whose optical pitch (λ$\sub$m/) increases with temperature, whereas all the uncrosslinked derivatives farmed left-handed helices whose λ$\sub$m/'s decreased with temperature. The thermal stability of the mesophase and the magnitude of λ$\sub$m/ at the same temperature for both CHPCs and CHPCEs decreased with increasing DE. All the crosslinked samples, in constrast with CHPCEs, did not display reflection colors but exhibited an anisotropic swelling characteristic of crosslinked gel retaining liquid-crystalline order.

Thermotropic Liquid Crystalline Behavior of Poly(1-cholesteryloxycarbonyloxy]ethylene] and Poly[1-(cholesteryloxycarbonylheptanoyloxy)ethylene] (폴리[1-(콜레스테릴옥시카보닐옥시)에틸렌]과 폴리[1-(콜레스테릴옥시카보닐헵타노일옥시)에틸렌]의 열방성 액정 거동)

  • Jeong, Seung-Yong;Ma, Yung-Dae
    • Polymer(Korea)
    • /
    • v.30 no.1
    • /
    • pp.35-44
    • /
    • 2006
  • Poly[1-(cholesteryloxycarbonyloxy)ethylene](PCOE) and poly[1-(cholesteryloxycarbonylheptanoyloxy)ethylene] (PCOSE) were prepared by reacting poly(vinyl alcohol) with cholesteryl chloroformate or 8-cholesteryloxycarbonylheptanoly] chloride (CH8C), and their thermal and optical properties were investigated. CH8C formed a monotropic cholesteric phase whereas PCOE and PCOSE exihibited enantiotropic cholesteric phases. Like in the case of CH8C, the optical pitch $(\lambda_m)$ of PCOSE decreased with increasing temperature. PCOE, contrast with PCOSE, did not display reflection colors, suggesting that the helical twisting power or the cholesteryl group highly depends on the length or the spacer joining the cholesteryl group to the main chain. The mesophase properties of PCOE and PCOSE were entirely different from those of poly $(cholesteryl-\omega-acryloyloxyalkanoates)$. The results indicate that the mode of chemical linkage of the side chain group with the main chain plays an important role in the formation, stabilization, and temperature dependence of $\lambda_m$ of the cholesteric mesophase.

Charge-discharge behaviour of lithium ion secondary battery using graphitized mesophase pitch-based carbon fiber anodes (흑연화 MPCF 부극을 이용한 Li ion 2차전지의 충방전 특성)

  • Kim Sang-Pil;Park Jeong-Hu;Cho Jeong-Soo;Yun Mun-Soo;Kim Kyu-Tae
    • Journal of the Korean Electrochemical Society
    • /
    • v.1 no.1
    • /
    • pp.14-17
    • /
    • 1998
  • Mesophase pitch-based carbon fibers(MPCF) have been investigated as an anode active material for lithium ion secondary battery. Graphitized MPCF gives high discharge capacity and good Ah efficiency. MPCF/Li cell shows an initial discharge capacity of 300 mAh/g and Ah efficiency above $90\%$ at a current density of 25 mA/g at $0\~1$ V. Cylindrical lithium ion secondary battery was fabricated using mixed carbon anode and $LiCoO_2$, cathode. In order to improve the cyclability of lithiun ion secondary battery, other carbons were added to the MPCF up to $10wt\%$. The cycle performance of lithium ion secondary battery using mixed carbons was superior to those using graphitized MPCF.

Preparation of Uniform Porous Carbon from Mesophase Pitch and Its Characteristics of Catalyst Support for the Direct Methanol Fuel Cell (메조페이스 핏치로부터 균질한 다공성 탄소 제조 및 이를 이용한 직접 메탄올 연료전지의 촉매 담지체 특성)

  • Nam, Ki-Don;Kim, Tae-Jin;Kim, Sang-Kyung;Lee, Byoung-Rok;Peck, Dong-Hyun;Ryu, Seung-Kon;Jung, Doo-Hwan
    • Applied Chemistry for Engineering
    • /
    • v.17 no.2
    • /
    • pp.223-228
    • /
    • 2006
  • Pore-size controlled porous carbons for the catalyst supports of the direct methanol fuel cell were prepared from the mesophase pitch by using the silica spheres with different sizes. Pitch solution in THF and spheres were mixed, carbonized and etched by 5 M NaOH to make porous carbon. Specific surface area of the porous carbons was $14.7{\sim}87.7m^2/g$ and average pore diameter was 50~550 nm which were dependent on the size of silica spheres. Aqueous reduction method was used to load 60 wt% PtRu on the prepared porous carbon supports. The electro-oxidation activity of the supported 60 wt% Pt-Ru catalysts was measured by cyclic voltammetry and unit cell test. For the 60 wt% Pt-Ru/porous carbon synthesized by 50 nm silica, current density value in the cyclic voltammetry test was $123mA/cm^2$ at 0.4 V and peak power density in the unit cell test were 105 and $162mW/cm^2$ under oxygen at 60 and $80^{\circ}C$, respectively.

The Effect of the Structure of the Carbon Fibers on the Structure of the Fiber Intercalated Compounds (탄소섬유의 구조가 섬유층간화합물의 구조에 미치는 영향)

  • 김인기;최상흘;고영신
    • Journal of the Korean Ceramic Society
    • /
    • v.30 no.9
    • /
    • pp.768-774
    • /
    • 1993
  • Sulphuric acid was intercalated in mesophase pitch based graphite fiber (Thornel P100 of Amoco), PAN based graphite fiber (M40 of Thoray) and PAN based carbon fiber (T300 ofThoray, TZ307 of Taekwang in Korea) by 0.4wt% CrO3/H2SO4 solution. The degree of crystallization of fibers increased P100, M40, TZ307, T300 fiber in order and their d002 values were 3.384, 3.424, 3.470, 3.493$\AA$, respectively. After intercalation P100 fiber formed 1 stage compound whose d002 value was 3.994$\AA$(d001=7.988$\AA$). Other fibers showed (002) reflection belonging to their 1 stage comound and prinstine fiber.

  • PDF

The Preparation and Property of Carbon Foams from Carbon Black Embedded Pitch Using PU Template (카본블랙이 내첨된 핏치로부터 폴리우레탄 조공제를 이용한 탄소 폼의 제조 및 특성)

  • Lee, Sangmin;Kim, Ji-Hyun;Jeong, Euigyung;Lee, Young-Seak
    • Korean Chemical Engineering Research
    • /
    • v.54 no.2
    • /
    • pp.268-273
    • /
    • 2016
  • To improve mechanical strength of carbon foams, the carbon black (CB) added carbon foams were fabricated by impregnating different contents of carbon black (CB) and mesophase pitch using polyvinyl alcohol (PVA) solution into polyurethane foam and being followed by heat treatment. The cell wall-thicknesses of carbon foams were controlled by adding amounts of CB, and it was confirmed that the compressive strength of carbon foams was increased as increasing cell wall-thickness. The compressive strength had the highest value of $0.22{\pm}0.05MPa$ with the highest bulk density of $0.44g/cm^3$ when adding 5 wt% CB in carbon foam. However, the thermal conductivity was decreased by adding CB in carbon foam. The results indicated that the thermal conductivities of carbon foams were reduced by increased interlayer spacing ($d_{002}$) with the addition of CB in carbon foams.

Preparation and Characterization of Pitch based Coke with Anisotropic Microstructure Derived from Pyrolysis Fuel Oil (열분해유 유래 피치로부터 이방성 미세구조 코크스 제조 및 특성 평가)

  • Cho, Jong Hoon;Kim, Ji Hong;Lee, Young-Seak;Im, Ji Sun;Kang, Seok Chang
    • Applied Chemistry for Engineering
    • /
    • v.32 no.6
    • /
    • pp.640-646
    • /
    • 2021
  • In this study, pitch was synthesized using pyrolysis fuel oil (PFO). Coke with mesophase microstructure was then prepared from the synthesized pitch and its properties were evaluated. Pitch was synthesized by poly-condensation reaction, which is an endothermic reaction at a temperature above 400 ℃ because the PFO was mainly composed of molecules with two to three aromatic rings. The Coke reactor was composed of the pretreatment reactor, preheater for applying heat energy, and coke drum for inducing microstructure of coke. Coke was prepared from synthesized pitch by controlling the temperature of the preheater to 400~490 ℃, and properties were evaluated by polarization microscope, XRD and Raman spectroscopy. The coke prepared at a preheater temperature of 460 ℃ identified flow anisotropic microstructure, and the electrical conductivity was 72.0 S/cm due to high crystallinity. And the flow anisotropic coke showed approximately 2.2 times higher electrical conductivity than that of Super-P, a conductive carbon material.

[ $SiO_2$ ] Effect on the Electrochemical Properties of Polymeric Gel Electrolytes Reinforced with Glass Fiber Cloth ($SiO_2$가 유리섬유로 보강된 고분자 겔 전해질의 전기 화학적 특성에 미치는 영향)

  • Park Ho Cheol;Kim Sang Heon;Chun Jong Han;Kim Dong Won;Ko Jang Myoun
    • Journal of the Korean Electrochemical Society
    • /
    • v.4 no.1
    • /
    • pp.6-9
    • /
    • 2001
  • [ $SiO_2$ ] effect on the electrochemical properties of polymeric gel electrolytes(PGEs) reinforced with glass fiber cloth(GFC) was investigated . PGEs were composed of polyacrylronitrile(PAN), poly(vinylidenefluoride-co-hexafluoropropylene) (P(VdF-co-HFP)), $LiClO_4$ and three kind of plasticizer(ethylene carbonate, dietyl carbonate, propylene carbonate). $SiO_2$ was added to PGEs in the weight fraction of 10, 20, $30\%$ respectively. PGEs containing $SiO_2$ showed conductivity of over $10^{-3}S/cm\;at\;23^{\circ}C$ and electrochemical stability window to 4.8V. In the impedance spectra of the cells, which were constructed by lithium metals as electrodes, interfacial resistance increased due to growth of passivation layer during storage time and remarkable difference was not observed with content of $SiO_2$. In the impedance spectra of the lithium ion polymer batteries consisted of $LiClO_2$ and mesophase pitch-based carbon fiber(MCF), ohmic cell resistance of $SiO_2-free$ PGE was changed continuously with number of cycle, but those of $SiO_2-dispersed$ PGEs were not. Discharge capacity of the PGE containing $20wt\%\;SiO_2$ showed 132 mAh/g at 0.2C rate and $85\%$ of discharge capacity was retained at 2C rate.

Thermotropic Liquid Crystalline Behavior of Aliphatic Acid Esters of N,O-Hydroxypropyl Chitosans (N,O-히드록시프로필 키토산 지방산 에스터들의 열방성 액정 거동)

  • Kim, Hyo Gap;Jung, Seung Yong;Ma, Yung Dae
    • Polymer(Korea)
    • /
    • v.37 no.3
    • /
    • pp.276-287
    • /
    • 2013
  • Two kinds of N,O-hydroxypropyl chitosans (HPCTOs) with degree of substitution (DS) and molar substitution (MS) ranging from 2.15 to 2.39 and 2.9 to 4.1, respectively, and five kinds of aliphatic acid esters of HPCTOs (HPCTOAms, m=0,2,4,7,9, the number of methylene units in aliphatic substituent) based on the HPCTOs were synthesized, and the thermotropic liquid crystalline properties of the derivatives were investigated. All the derivatives formed enantiotropic cholesteric phases whose optical pitches (${\lambda}_m$'s) increased with increasing temperature. However, the glass and clearing temperatures, the magnitude of ${\lambda}_m$ of the mesophase at the same temperature, and the temperature dependence of ${\lambda}_m$ of the investigated derivatives highly depended on MS and m. The thermotropic mesophase properties of HPCTOAms were significantly different from those reported for the aliphatic acid esters of hydroxypropyl celluloses. The results indicate that the secondary amino group in the C-2 position plays an important role in the thermal stabilization and temperature dependence of ${\lambda}_m$ of the cholesteric mesophase.

Preparation of electro-catalysts supported on the bimodal porous carbon for polymer electrolyte fuel cell (Bimodal 다공성 탄소지지체에 담지된 고분자전해질연료전지용 전극촉매 제조)

  • Hwang, So-hee;Park, Gu-Gon;Yim, Sung-Dae;Park, Seok-Hee;Kim, Han-Sung;Yang, Tae-Hyun;Kim, Chang-Soo
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2009.06a
    • /
    • pp.652-655
    • /
    • 2009
  • The bimodal porous carbons were synthesized by using imprinting method with templates of SBA-15 particle and silica sphere and applied as supporting materials for the electro-catalyst of polymer electrolyte fuel cell (PEFC). The silica spheres with diameter size of 100 nm and SBA-15 particle having 200 nm -250 nm diameter and 700 nm -900 nm length were synthesized in this work. The bimodal porous carbons (S100) were prepared by using the silica spheres and SBA-15 as templates and mesophase pitch as a carbon source. The PtRu nanoparticle of ca. 1.9 nm were supported on the bimodal porous carbon support and the resulting PtRu/S100 catalysts was tested by the cyclic voltammetry. The use of bimodal porous carbon showed in comparable electro-catalytic activities with commercial catalyst. Though unclear effects of bimodal porosity of supports could be obtained in the scope of this study, morphological advantage in electrical conductivity can be considered on the electro-catalytic activity.

  • PDF