• Title/Summary/Keyword: Mesophase pitch

Search Result 64, Processing Time 0.024 seconds

Densification of 4D Carbon Fiber Performs with Mesophase Pitch as Matrix-Precursor

  • Joo, Hyeok-Jong;Lee, Jae-Won
    • Carbon letters
    • /
    • v.6 no.3
    • /
    • pp.173-180
    • /
    • 2005
  • In this study, AR (aromatic resin) pitch was employed as the matrix-precursor for carbon/carbon composite because it exhibits much higher coke yield than coal tar pitch. As a result, a fabrication process of carbon/carbon composites can be shortened. It has been known that the pitches may cause swolling problem during the carbonization process. In order to restrain the swelling occurrence, a small quantity of carbon black was added to the AR pitch. Due to addition of carbon black the swelling was decreased largely and the perform can be infiltrated with the AR pitch. The densification efficiency of the performs was compared with various matrix-precursors. The coke yield of matrixprecursors, the morphology and the degree of graphitization of carbon matrix were analyzed.

  • PDF

Preparatoin of Precursor Pitch for Carbon Applications from Naphtha Cracking Residues (납사분해공정 잔사유로부터 탄소재료용 전구체 핏치의 제조)

  • Kim, Myung-Soe;Kim, Sang-Yeol;Hwang, Jong-Sic
    • Journal of the Korean Applied Science and Technology
    • /
    • v.14 no.1
    • /
    • pp.77-87
    • /
    • 1997
  • PFO(pyrolized fuel oil) and $C_{10}^{+}$ oil, which are the residual heavy oils form a NCC(naphtha cracking center), were heat-treated to produce the precursor-pitch for carbon materials. After PFO was initially distilled near $300^{\circ}C$ to separate the volatile matters recovering as high-quality fuel oil, the residuum of nonvolatile precursor-pitch was then thermally pyrolized in the temperature ranges from $350^{\circ}C$ to $450^{\circ}C$. Spinnable isotropic pitch with the softening point of $200^{\circ}C$ and the toluene insolubles of 36wt% was obtained at $365^{\circ}C$, and then was successfully spun through a spinneret(0.5mm diameter). After spinning, an isotropic carbon fiber of $25{\mu}m$ diameter was obtained via oxidation and craboniation procedures. Mesophase spherules began to be observed from the product pitch pyrolized at $400^{\circ}C$, and bulk mesophase with a flow texture was observed above $420^{\circ}C$. In the case of $C_{10}^{+}$ was the feed was polymerized in the presence $H_2SO_4$ at room temperature to increase the molecular weight and then heat-treated gradually up to $200{\sim}250^{\circ}C$. The products obtained with the softening point of $80{\sim}190^{\circ}C$ were carbonized at 500 and $1000^{\circ}C$ to examine the morphology.

Synthesis of Carbon Materials from PFO, Byproducts of Naphtha Cracking Process (나프타 분해공정 부산물인 PFO로부터 탄소구조체 합성)

  • Lee, Jiyon;Park, Seung-Kyu
    • Applied Chemistry for Engineering
    • /
    • v.22 no.5
    • /
    • pp.495-500
    • /
    • 2011
  • Separation of naphthalene from pyrolyzed fuel oil, by product of Naphta cracking process (NCC) process, has been accomplished by the solvent extraction, distillation and purification process. The residual pyrolyzed fuel oil (PFO), called precursor of carbon materials, has been calcined at $300{\sim}800^{\circ}C$ in nitrogen gas to raw pitch. After the treatment of PFO by hexane and methanol, either a flake phased carbon at $350^{\circ}C$ or a carbon sphere at above $400^{\circ}C$ forms. As the calcination temperature increases, the shape of raw pitch changes from the flake phase to the sphere one, and the size of them decreases to several ${\mu}m$. Based on the BET and XRD spectrum, the carbon sphere is classified to a mesophase amorphous carbon with a cubic phase.

Compressional Behavior of Carbon Nanotube Reinforced Mesophase Pitch-based Carbon Fibers

  • Ahn Young-Rack;Lee Young-Seak;Ogale A.A.;Yun Chang-Hun;Park Chong-Rae
    • Fibers and Polymers
    • /
    • v.7 no.1
    • /
    • pp.85-87
    • /
    • 2006
  • The tensile-recoil compressional behavior of the carbon nanotube reinforced mesophase pitch (MP)-based composite carbon fibers (CNT-re-MP CFs) was investigated by using Instron and SEM. The CNT-re-MP CFs exhibited improved, or at least equivalent, compressive strength as compared with commercial MP-based carbon fibers. Particularly, when CNT of 0.1 wt% was reinforced, the ratios of recoil compressive strengths to tensile strength of CNT-re-MPCFs were much higher (the difference is at least 10 % or higher) than those for the commercial counterparts and even than those for PAN-based commercial carbon fibers. FESEM micrographs showed somewhat different fractography from that of a typical shear failure as the CNT content increased.

Influence of hot-pressing pressure on the densification of short-carbon-fiber-reinforced, randomly oriented carbon/carbon composite

  • Raunija, Thakur Sudesh Kumar;Sharma, Sharad Chandra
    • Carbon letters
    • /
    • v.16 no.1
    • /
    • pp.25-33
    • /
    • 2015
  • The prime objective of this research was to study the influence of hot-pressing pressure and matrix-to-reinforcement ratio on the densification of short-carbon-fiber-reinforced, randomly oriented carbon/carbon-composite. Secondary objectives included determination of the physical and mechanical properties of the resulting composite. The 'hybrid carbon-fiber-reinforced mesophase-pitch-derived carbon-matrix' composite was fabricated by hot pressing. During hot pressing, pressure was varied from 5 to 20 MPa, and reinforcement wt% from 30 to 70. Densification of all the compacts was carried at low impregnation pressure with phenolic resin. The effect of the impregnation cycles was determined using measurements of microstructure and density. The results showed that effective densification strongly depended on the hot-pressing pressure and reinforcement wt%. Furthermore, results showed that compacts processed at lower hot-pressing pressure, and at higher reinforcement wt%, gained density gradually during three densification cycles and showed the symptoms of further gains with additional densification cycles. In contrast, samples that were hot-pressed at moderate pressure and at moderate reinforcement wt%, achieved maximum density within three densification cycles. Furthermore, examination of microstructure revealed the formation of cracks in samples processed at lower pressure and with low reinforcement wt%.

The Inertia Friction properties of the Carbon/Carbon Composites Manufactured Using a Coal-tar Pitch (콜타르 핏치를 이용하여 제조된 탄소/탄소 복합재의 관성제동 마찰특성)

  • 이진용;서동수;임연수;이승구;박종규
    • Journal of the Korean Ceramic Society
    • /
    • v.35 no.7
    • /
    • pp.740-748
    • /
    • 1998
  • The inertia friction properties of C/C composites manufactured by the processes of pressure and at-mospheric carbonizaton with a commerciallized and two kinds of modified coal-tar pitch as a matrix pre-cursor were investigated. The modifications of a pitch such as the introduction of mesophase and the ad-dition of sulphur into a raw pitch were not effective for a impregnation efficiency conducted in a vacuum and at the same time in a pressure of 5kg/cm2 due to the increase of the pitch viscosity. There was not a difference in the densification increment between the pitch modifications however it was revealed that a pressure carbonization was more advantageous than an atmospheric in the densification and the formation of anisotropic carbon matrix. The friction and wear propertis of C/C having higher degree of matrix cry-stallization higher density and hardness of friction surface showed superiority. As the braking energy was increased the friction coefficients were decreased and reached almost same level at the high kinetic energy of 99.6kJ. The wear trends at 99.6kJ were different from the behaviors of friction ceofficient under the same energy in which an oxidation wear is being considered along with a mechnical wear although the wear rates were almost similar to the friction coefficient at the low energy.

  • PDF

Thermal Anisotropy of Hollow Carbon Fiber-Carbon Composite Materials

  • Yang, Chun-Hoi;Shim, Hwan-Boh
    • Journal of the Korean Applied Science and Technology
    • /
    • v.22 no.2
    • /
    • pp.91-95
    • /
    • 2005
  • Carbon composites were prepared with pitch-based round, C, hollow-type carbon fibers and pitch matrix. The thermal conductivities parallel and perpendicular to the fiber axis were measured by steady-state method. It was found that the thermal conductivities depended on the cross-sectional forms of the reinforcing fibers as well as the reinforcing orientation and carbon fiber precusors. Especially, mesophase pitch-based hollow carbon fiber-carbon composites had the most excellent thermal anisotropy, which was above 100.

Interface and Microstructure Development in Carbon/Carbon Composites

  • Mathur, R.B.;Bahl, O.P.;Dhami, T.L.;Chauhan, S.K.;Dhakate, S.R.;Rand, B.
    • Carbon letters
    • /
    • v.5 no.2
    • /
    • pp.62-67
    • /
    • 2004
  • Performance of carbon-carbon composites is known to be influenced by the fibre matrix interactions. The present investigation was undertaken to ascertain the development of microstructure in such composites when carbon fibres possessing different surface energies (T-300, HM-35, P120 and Dialed 1370) and pitch matrices with different characteristics (Coal tar pitch $SP110^{\circ}C$ and mesophase pitch $SP285^{\circ}C$) are used as precursor materials. These composites were subjected to two different heat treatment temperatures of $1000^{\circ}C$ and $2600^{\circ}C$. Quite interesting changes in the crystalline parameters as well as the matrix microstructure are observed and attempt has been made to correlate these observations with the fibre matrix interactions.

  • PDF

Effect on Formation of Liquid Crystal Pitch (액정핏치 형성에 관한연구)

  • Gwon, Yeong-Bae;Ryu, Hae-Il
    • 한국기계연구소 소보
    • /
    • s.13
    • /
    • pp.15-25
    • /
    • 1984
  • The infrared spectra were determined to discover the characteristics and properties of poff-, PV-, and cc-samples, and studied influence on the formation of mesophase or liquid crystal. The experimental results were as follows; a) Samples with long aliphatic side chain appear cracking texture on temperature forming liquid crystal. b) The fine isotropic microstructure appears in a heterogeneous material containing sulfur, 7.18 w%. c) In the size of molecular weight the lighter than 500 form liquid crystal. d) When poff-sample was treated at $400^{\circ}C$ aliphatic hydrocabon compounds decrease, presented well-oriented bulk liquid crystal.

  • PDF

Pressure Effects on the Morphology Development of C/C Composites During Carbonization

  • Joo, Hyeok-Jong;Ryu, Seung-Hee;Ha, Hun-Seung
    • Carbon letters
    • /
    • v.1 no.3_4
    • /
    • pp.158-164
    • /
    • 2001
  • It is well known that the fabrication process of carbon/carbon composites is very complex. Above all, the carbonization process have major effect on the morphology development of carbon matrix. Carbon/carbon composites of 4-directional fiber preform were fabricated using the coal tar based pitch as a matrix precursor in this study. According to carbonization pressure of 1 bar, 100 bar, 600 bar, and 900 bar, morphological changes of cokes and matrix of composites were discussed. As the carbonization pressure increased to 600 bar, the flow pattern morphology of bulk mesophse was well developed. On the contrary, mosaic pattern morphology was found in case of 900 bar of carbonization pressure. It is confirmed that the carbonization pressure have profound effect on the degree of graphitization and crystal size of carbon matrix. Even in the highly densified carbon/carbon composites, large voids were still found in the matrix pocket region.

  • PDF