Browse > Article
http://dx.doi.org/10.14478/ace.2011.22.5.495

Synthesis of Carbon Materials from PFO, Byproducts of Naphtha Cracking Process  

Lee, Jiyon (Department of Chemical Engineering, Hoseo University)
Park, Seung-Kyu (Department of Chemical Engineering, Hoseo University)
Publication Information
Applied Chemistry for Engineering / v.22, no.5, 2011 , pp. 495-500 More about this Journal
Abstract
Separation of naphthalene from pyrolyzed fuel oil, by product of Naphta cracking process (NCC) process, has been accomplished by the solvent extraction, distillation and purification process. The residual pyrolyzed fuel oil (PFO), called precursor of carbon materials, has been calcined at $300{\sim}800^{\circ}C$ in nitrogen gas to raw pitch. After the treatment of PFO by hexane and methanol, either a flake phased carbon at $350^{\circ}C$ or a carbon sphere at above $400^{\circ}C$ forms. As the calcination temperature increases, the shape of raw pitch changes from the flake phase to the sphere one, and the size of them decreases to several ${\mu}m$. Based on the BET and XRD spectrum, the carbon sphere is classified to a mesophase amorphous carbon with a cubic phase.
Keywords
PFO; naphthalene extraction; raw pitch; carbon sphere; mesophase pitch;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
Times Cited By SCOPUS : 0
연도 인용수 순위
1 E. Hajekova, B. Mlynkova, M. Bajus, and L. Spodova, J. Anal. Appl. Pyrolysis, 79, 196 (2007).   DOI   ScienceOn
2 N. Viswanadham, G. Muralidhar, and T. S. R. P. Rao, Journal of Molecular Catalysis A: Chemical, 223, 369 (2004).
3 J. C. Liu, B. X. Shen, D. Q. Wang, and J. H. Dong, Journal of Petroleum Science and Engineering, 66, 156 (2009).   DOI   ScienceOn
4 G. Wang, C. Xu, and J. Gao, Fuel Processing Technology, 89, 864 (2008).   DOI   ScienceOn
5 M. R. Rahimpour, R. Vakili, E. Pourazadi, D. Iranshahi, and K. Paymooni, International Journal of Hydrogen Energy, 36, 2979 (2011).   DOI   ScienceOn
6 J. S. Hwang, C. H. Lee, K. H. Cho, M. S. Kim, C. J. Kim, S. K. Ryu, and B. S. Rhee, Hwahak Konghak, 33, 551 (1995).
7 C. Kim, S. Y. Eom, S. K. Ryu, and D. D. Edie, Korean Chem. Eng. Res., 43, 745 (2005).
8 M. Spiteller and J. A. Javanovic, Fuel, 78, 1263 (1999).   DOI   ScienceOn
9 Y. Korai, S. H. Yoon, H. Oka, I. Mochida, T. Nakamura, I. Kato, and Y. Sakai, Carbon, 36, 369 (1998).   DOI   ScienceOn
10 F. Watanabe, Y. Korai, I. Mochida, and Y. Nishimura, Carbon, 38, 741 (2000).   DOI   ScienceOn
11 E. Mora, R. Santamaria, M. Granda, and R. Menendez, Carbon, 41, 445 (2003).   DOI   ScienceOn
12 M. Dumont, M. A. Dourges, X. Bourrat, R. Pailler, R. Naslain, O. Babot, M. Birot, and J. P. Pillot, Carbon, 43, 2277 (2005).   DOI   ScienceOn
13 M. Z. Ozel and K. D. Bartle, Turk. J. Chem., 26, 417 (2002).
14 M. Dumont, G. Chollon, M. A. Dourges, R. Pailler, X. Bourrat, R. Naslain, J. L. Bruneel, and M. Couzi, Carbon, 40, 1475 (2002).   DOI   ScienceOn
15 K. J. Kim, J. W. Kim, J. K. Kim, and Y. H. Chen, J. Korean Ind. Eng. Chem., 13, 63 (2002).
16 V. J. Mayani, S. V. Mayani, Y. Lee, and S. K. Park, Separation and Purification Tech., 80, 90 (2011).   DOI   ScienceOn
17 Y. Z. Jin, C. Gao, W. K. Hsu, Y. Zhu, A. Huczko. M. Bystrezejewski, M. Rho, C. Kroto, and D. R. M. Walton, Carbon, 43, 1944 (2005).   DOI   ScienceOn
18 R. Moriyama, H. Kumagai, J. I. Hayashi, C. Yamagichi, J. Mondori, H. Matsui, and T. Chiba, Carbon, 38, 749 (2000).   DOI   ScienceOn
19 Y. G. Wang, Y. Korai, I. Mochida, K. Nagayama, H. Hatano, and N. Fukuda, Carbon, 39, 1627 (2001).   DOI   ScienceOn
20 I. Mochida, Y. Korai, C. H. Ku, F. Watanabe, and Y. Sakai, Carbon, 38, 305 (2000).   DOI   ScienceOn
21 Li, Ying, Z. Liang, Z. Rui, Q. Wen-ming, L. Xiao-yi, and L. Li-cheng, New Carbon Materials, 22, 259 (2007).   DOI
22 R. Moriyama, J. I. Hayashi, R. Goda, and T. Chiba, Materials Chemistry and Physics, 92, 205 (2005).   DOI   ScienceOn
23 M. Inagaki, Carbon, 35, 711 (1997).   DOI   ScienceOn
24 V. G. Pol, M. Motieti, A. Gedanjen, J. C. Moreno, and M. Yoshimura, Carbon, 42, 111 (2004).   DOI   ScienceOn
25 V. Liedtke and K. J. Huttinger, Carbon, 34, 1057 (1996).   DOI   ScienceOn
26 K. M. Chioujones, W. Ho, B. Fathollahi, P. C. Chau, P. G. Wapner, and W. P. Hoffman, Carbon, 44, 284 (2006).   DOI   ScienceOn
27 V. Liedtke and K. J. Huttinger, Carbon, 34, 1081 (1996).   DOI   ScienceOn
28 Y. Korai, S. Ishida, S. H. Yoon, Y. G. Wang, I. Mochida, Y. Nakagawa, C. Yamaguchi, Y. Matsumura, Y. Sakai, and M. Komatu, Carbon, 35, 1503 (1997).   DOI   ScienceOn
29 L. Xu, W. Zhang, Q. Yang, Y. Ding, W. Yu, and Y. Qian, Carbon, 43, 1084 (2005).   DOI   ScienceOn
30 A. A. Deshmukh, S. D. Mhlanga, and N. J. Coville, Materials Science and Engineering R, 70, 1 (2010).   DOI   ScienceOn
31 Y. Yang, X. Liu, C. Y. Zhang, M. Guo, and B. Xu, Journal of Physics and Chemistry of Solids, 71, 235 (2010).   DOI   ScienceOn
32 K. Oshida and S. Bonnamy, Carbon, 40, 2699 (2002).   DOI   ScienceOn
33 H. Yang, Y. Tan, Y. Liu, F. Zhang, R. Zhang, Y. Meng, M. Li, S. Xie, B. Tu, and D. Zhao, J. Phys. Chem. B, 108, 17320 (2004).   DOI   ScienceOn
34 S. Jun, S. H. Joo, R. Ryuu, M. Kruk, M. Jaroniec, Z. Liu, T. Ohsuna, and O. Terasaki, J. Am. Chem. Soc., 122, 10712 (2000).   DOI   ScienceOn
35 Y. G. Wang, Y. C. Chang, S. Ishida, Y. Korai, and I. Mochida, Carbon, 37, 969 (1999).   DOI   ScienceOn