• Title/Summary/Keyword: Mesophase

Search Result 137, Processing Time 0.022 seconds

Effect of Molecular Weight on Thermal Behavior of Polyurthanes Containing Mesogen Unit (분자량이 메소겐기를 포함한 폴리우레탄의 열적거동에 미치는 영향)

  • Hong, Sung-Chul;Lee, Woo-Young;Nam, Byeong-Uk;Lee, Sang-Won
    • Elastomers and Composites
    • /
    • v.40 no.3
    • /
    • pp.212-221
    • /
    • 2005
  • Polyurethanes containing mesogen unit (MPU-6) were prepared from 4,4'-diphenylmethane diisocyanate (MDI) and 4,4'-bis(6-hydroxy hexoxy)biphenyl (BP-6) having flexible chain composed of 6 carbons. Intrinsic viscosities of MPU-6s were in the range of $0.23{\sim}0.56 dL/g$. The mesomorphic behaviors of MPU-6 were observed in X-ray and polarizing microscopy analysis. However, MPU-6s demonstrated a 'virtual liquid crystal' behavior, which did not exhibit mesophase on slow heating and slow cooling. MPU-6 having lower molecular weight exhibited higher crystallization rate and melting crystallization temperature due to increased mobility of polymer chains. The increased mobility of polymer chains facilitate the orientation of mesogen units that may act as a nucleating agent.

The Preparation and Property of Carbon Foams from Carbon Black Embedded Pitch Using PU Template (카본블랙이 내첨된 핏치로부터 폴리우레탄 조공제를 이용한 탄소 폼의 제조 및 특성)

  • Lee, Sangmin;Kim, Ji-Hyun;Jeong, Euigyung;Lee, Young-Seak
    • Korean Chemical Engineering Research
    • /
    • v.54 no.2
    • /
    • pp.268-273
    • /
    • 2016
  • To improve mechanical strength of carbon foams, the carbon black (CB) added carbon foams were fabricated by impregnating different contents of carbon black (CB) and mesophase pitch using polyvinyl alcohol (PVA) solution into polyurethane foam and being followed by heat treatment. The cell wall-thicknesses of carbon foams were controlled by adding amounts of CB, and it was confirmed that the compressive strength of carbon foams was increased as increasing cell wall-thickness. The compressive strength had the highest value of $0.22{\pm}0.05MPa$ with the highest bulk density of $0.44g/cm^3$ when adding 5 wt% CB in carbon foam. However, the thermal conductivity was decreased by adding CB in carbon foam. The results indicated that the thermal conductivities of carbon foams were reduced by increased interlayer spacing ($d_{002}$) with the addition of CB in carbon foams.

Thermotropic Behavior of Hydroxypropyl Chitosans Bearing Cholesteryl and Acryloyl Groups (콜레스테릴과 아크릴로일 그룹을 지닌 하이드록시프로필 키토산들의 열방성 거동)

  • 김장훈;정승용;마영대
    • Polymer(Korea)
    • /
    • v.28 no.1
    • /
    • pp.41-50
    • /
    • 2004
  • A new hydroxypropyl chitosan capable of forming a thermotropic liquid crystalline phase and two kinds of derivatives based on the hydroxypropyl chitosan (6-cholesteryloxycarbonylpentoxypropyl) chitosans (CHPCTs) and acrylic acid esters of CHPCT (CHPCTEs) were synthesized. The crosslinked films with liquid crystalline order were also prepared by photocrosslinking CHPCTE in mesophase. The liquid crystalline properties for all the samples and the swelling behavior of the crosslinked samples in acetone were investigated. In contrast with the hydroxypropyl chitosan, all the uncrosslinked cholesteryl-bearing samples farmed monotropic cholesteric phases with left-handed helicoidal structures and exhibited reflection colors over the full cholesteric range. This is the first report of a thermotropic cholesteric liquid crystalline chitosan derivative with reflection bands in the visible region. Both the optical pitches (λ$\_$m/'S) of CHPCT and CHPCTE decrease with temperature or with cholesteryl content at a given temperature. However, the λ$\_$m/ of CHPCT was larger than that of CHPCTE at the same temperature and at the same cholesteryl content. All the crosslinked samples did not display reflection colors, indicating that the cholesteric structure of CHPCTE significantly changes upon crosslinking. The two-dimentional anisotropic swelling characteristic of liquid crystalline networks was observed for all the crosslinked samples.

Thermotropic Liquid Crystalline Properties of (8-Cholesteryloxycarbonyl)heptanoated Polysaccharides ((8-콜레스테릴옥시카보닐)헵타노화 다당류들의 열방성 액정 특성)

  • Jeong Seung-Yong;Ma Yung-Dae
    • Polymer(Korea)
    • /
    • v.30 no.4
    • /
    • pp.338-349
    • /
    • 2006
  • Fully or nearly fully(8-cholesteryloxycarbonyl)heptanoated polysaccharide derivatives were synthesized by reacting cellulose, amylose, chitosan, chitin, alginic acid, pullulan or amylopectin with (8-cholesteryloxycarbonyl)heptanoyl chloride (CH8C), and their thermotropic liquid crystalline behaviors were investigated. Like in the case of CH8C, all the polysaccharide derivatives formed monotropic cholesteric phases with left-handed helicoidal structures whose optical pitches $({\lambda_m}'s)$ decrease with increasing temperature. Amylopectin derivative also formed a monotropic cholesteric phase with lefthanded helicoidal structures but, in contrast with the other derivatives, did not display reflection colors over the full cholesteric range, suggesting that the helicoidal twisting power of the cholesteryl group highly depends on the branched structure in amylopectin. The thermal stability and degree of order in the mesophase, the magnitude of ${\lambda}_m$ at the same temperature, and the temperature dependence of the ${\lambda}_m$ observed for polysaccharide derivatives were entirely different from those reported for the polymers in which the cholesteryl groups are attached to flexible or semiflexible backbones through flexible spacers. The results were discussed in terms of the difference in the chemical structures of the main and side chains and flexibility of the main chain.

Thermotropic Liquid Crystalline Properties of Cholesteryloxycarbonated and (8-Cholesteryloxycarbonyl) heptanoated Disaccharides (콜레스테릴옥시카본화 그리고 (8-콜레스테릴옥시카보닐)헵타노화 이당류들의 열방성 액정 특성)

  • Jeong, Seung-Yong;Ma, Yung-Dae
    • Polymer(Korea)
    • /
    • v.31 no.1
    • /
    • pp.58-67
    • /
    • 2007
  • Fully cholesteryloxycarbonated and (8-cholesteryloxycarbonyl) heptanoated disaccharide derivatives were synthesized by reacting cellobiose, maltose, and lactose with cholesteryl chloroformate or 8- cholesteryloxycarbonylheptanoyl chloride, and their thermotropic liquid crystalline properties were investigated. All the cholesteryloxycarbonated derivatives (CH1DSs) formed enantiotropic cholesteric phases, whereas all the (8-cholesteryloxycarbonyl) heptanoated derivatives (CH8DSs) exhibited monotropic cholesteric phases with left-handed helicoidal structures whose optical pitches (${\lambda}m's$) decrease with increasing temperature. All the CH1DSs, contrast with the CH8DSs, did not display reflection colors over the full cholesteric range, suggesting that the helicoidal twisting power of the cholesteryl group highly depends on the length of the spacer joining the cholesteryl group to the disaccharide chain. The thermal stability and degree of order in the mesophase and the temperature dependence of the ${\lambda}m$ observed for EH8DSs were entirely different from those reported for the cholesterol-bearing dimers and triplet and the (8-cholesteryloxycarbonyl) heptanoated polysaccharide derivatives. The results were discussed in terms of the difference in the number of the mesogenic units per mole of repeating unit and the flexibility of the main chain.

Infulence of Spacer and Degree of Esterification on Thermotropic Liquid Crystalline Properties of Amyloses Bearing Cholesteryl Group (스페이서와 에스터화도가 콜레스테릴 그룹을 지닌 아밀로오스들의 열방성 액정 특성에 미치는 영향)

  • Jeong, Seung-Yong;Ma, Yung-Dae
    • Polymer(Korea)
    • /
    • v.31 no.4
    • /
    • pp.356-367
    • /
    • 2007
  • Three kinds of amylose derivatives such as: cholesteryloxycarbonated amyloses(CAMs) with degree of esterification(DE) ranging from 1.8 to 3, (6-cholesteryloxycarbonyl)pentanoated amyloses(PAMs) with DE ranging from 0.3 to 3, and fully cholesteryloxycarbonated PAMs(CPAMs) were synthesized, and their thermotropic liquid crystalline properties were investigated. CAMs with $DE{\geq}2.6$, PAM with DE=1.6 and all the CPAMs formed enantiotropic cholesteric phases, whereas PAM with $DE{\geq}2.2$ exhibited monotropic cholesteric phases. PAM with $DE{\geq}2.2$ and CPAMs with (6-cholesteryloxycarbonyl)pentanoyl DE (DS) more than 1.0 formed cholesteric phases with left-handed helical structures whose optical pitches (${\lambda}_{m'}s$) decrease with increasing temperature. However, the ${\lambda}_{m'}s$ of these samples decreased with increasing DS at the same temperature. On the other hand, CAMs, PAM with DE=1.6, and CPAM with DS=0.3 did not display reflection colors over the full cholesteric range, suggesting that the helicoidal twisting power of the cholesteryl group highly depends on the length of the spacer joining the cholesteryl group to the main chain and DS. The thermal stability and degree of order in the mesophase observed for the amylose derivatives highly depended on DE or DS. The results were discussed in terms of the difference ul the hydrogen bond, the internal plasticization, and the decoupling of the motion of side group with the main chain.

Thermotropic Liquid Crystalline Behavior of Tri-O-[4-{4'-(cyanophenylazo)phenoxy}]alkyl Celluloses (트리-O-[4-{4'-(시아노페닐아조)페녹시}]알킬 셀룰로오스들의 열방성 액정 거동)

  • Jeong, Seung-Yong;Son, Ho-Min;Ma, Yung-Dae
    • Polymer(Korea)
    • /
    • v.34 no.2
    • /
    • pp.116-125
    • /
    • 2010
  • The thermotropic liquid crystalline behavior of the homologous series of combined-type liquid crystalline polymers, tri-O-{4-(4'-cyanophenylazo)phenoxy}alkyl celluloses (CACETn, where n, the number of methylene units in the spacer, is 2~10) have been investigated. The CACETn with n of 5 and 7 exhibited enantiotropic nematic phases, while other polymers showed monotropic nematic phases. The isotropic-nematic transition temperature($T_{iN}$) increased when n is increased up to 4, but it decreased with increasing n more than 5. The entropy change at $T_{iN}$ also reaches a minimum at n=5, before it increases again for n=6. The sharp change at n=5 may be attributed to the difference in arrangement in the side groups. The nematic-crystalline transition temperatures, in contrast with $T_{iNS}$, exhibited a distinct odd-even effect, suggesting that the average shape of the side chains in the crystalline phase is different from that in the nematic phase. The mesophase properties of CACETn were significantly different from those reported for tri-O-alkyl celluloses and poly[1-{4-(4'-cyanophenylazo)phenoxyalkyloxy}ethylene]s. The results were discussed in terms of the difference in the chemical structures of the main and side chains and the number of the mesogenic units per repeating unit.

Synthesis and Properties of Di-azomesogenic Liquid Crystal Compounds with Terminal Substituents (말단에 치환기를 갖는 이-아조메소젠 액정화합물의 합성 및 성질)

  • Park, Jong-Ryul;Gu, Su-Jin;Yoon, Doo-Soo;Bang, Moon-Soo;Choi, Jae-Kon
    • Applied Chemistry for Engineering
    • /
    • v.26 no.6
    • /
    • pp.698-705
    • /
    • 2015
  • Two series of symmetric dimesogenic compounds containing a butylene or 1-methylbutylene spacer as a flexible group were synthesized. The mesogenic groups of synthesized compounds consist of an azobenzene group with a terminal substituent. Chemical structures as well as, thermal, mesomorphic, and photochemical properties of the synthesized compounds were investigated using FT-IR, $^1H-NMR$, differential scanning calorimetry (DSC), polarizing optical microscopy (POM), and UV-visible spectrometry. P-H, P-F, and $P-OC_6H_{13}$ showed monotropic liquid crystal phases, whereas the others showed enantiotropic liquid crystal phases. Compounds with butylene group as a flexible spacer exhibited wider mesophase temperature ranges and higher thermal transition temperatures than compounds containing a 1-methylbutylene group. Compounds with a high absolute value of the Hammett substituent constant exhibited high thermal transition temperatures and improved stability in the liquid crystal phase. Furthermore, in the absence or presence of UV light illumination, terminal substituents of the azomesogenic group were important factors in deciding the maximum absorbance wavelength (${\lambda}_{max}$) and the rate of photoisomerization (K).

Effect of Stabilization Conditions on the Microstructure and Electrochemical Properties of Melt-blown Graphite Fibers Prepared from NMP (NMP로부터 제조된 Melt-blown흑연섬유의 안정화조건에 따른 미세구조와 전기화학적 특성)

  • Kim Chan;Yang Kap Seung;Ko Jang Myoun;Park Sang Hee;Park Ho Chul;Kim Young-Min
    • Journal of the Korean Electrochemical Society
    • /
    • v.4 no.3
    • /
    • pp.104-108
    • /
    • 2001
  • Naphthalene derived mesophase pitch WP) was spun into short fibers by using melt-blown technology. The pitch fibers oxidative stabilization were carried out heating rates of $2^{\circ}C/min,\;5^{\circ}C/min\;and\; 10^{\circ}/min$. The heating rate was a key factor to maximate the capacity of the Li-ion secondary battery through controlling the morphology of the graphitized fiber. The diameters of the melt-blown fibers prepared were in the range of $4{\mu}m\~16{\mu}m$ with functions of air jet speed, air temperature and the temperature of the nozzle. The graphitized fibers of $10{\mu}m$ diameters showed various morphological structure with heating rate of the stabilization. Radial, radial-random and skin-core cross-sectional structure of the fibers were observed at the respective heating rate of $2^{\circ}C/min\;5^{\circ}C/min\;and\;10^{\circ}C/min$. Most crystalline structure of graphite was obtained from the fiber stabilized at heating rate of $10^{\circ}C/min$ exhibiting the best anode performance with 400 mAh/g of capacitance and $96.8\%$ of charge/discharge efficiency.

Thermotropic Liquid Crystalline Behaviors of 4-{4'-(nitrophenylazo)phenoxy}alkanoic Acids and 4-{4'-(nitrophenylazo)phenoxy}alkanoyl Chlorides (4-{4'-(니트로페닐아조)펜옥시}알칸 산들 그리고 4-{4'-(니트로페닐아조)펜옥시}알카노일 클로라이드들의 열방성 액정 거동)

  • Jeong, Seung Yong;Ma, Yung Dae
    • Applied Chemistry for Engineering
    • /
    • v.19 no.5
    • /
    • pp.504-511
    • /
    • 2008
  • Two kinds of nitroazobenzene derivatives: 4-{4'-(nitrophenylazo)phenoxy}alkanoic acids (NAAn, n = 2~8, 10, number of methylene units in the alkyl chain) and 4-{4'-(nitrophenylazo)phenoxy}alkanoyl chlorides (NACn, n = 2~8, 10) were synthesized, and their thermotropic liquid crystalline behaviors were investigated. NAA6 formed an enantiotropic nematic phase, while the remainders, except NAA2, showed monotropic nematic phases. Isotropic-nematic transition temperature ($T_{iN}$) and change of entropy (${\Delta}S$) at $T_{iN}$ for both of NAAn and NACn varied by the change of n, and pronounced odd-even effects of n were also observed. However, the $T_{iN}$ and ${\Delta}S$ values of NAAn were much higher than those of NACn. This fact may be attributed to the hydrogen bonding between carboxyl groups. Thermal properties and degree of order in the mesophase and the magnitude of the odd-even effects of both NAAn and NACn were significantly different from those reported for 4-(alkoxy)-4'-nitroazobenzenes. It was discussed in terms of the differences in the molecular anisotropy and the temperature-dependent flexibility of the substituted groups.