• 제목/요약/키워드: Meshed distribution system

검색결과 6건 처리시간 0.02초

A Three-phase Hybrid Power Flow Algorithm for Meshed Distribution System with Transformer Branches and PV Nodes

  • Li, Hongwei;Wu, Huabing;Jiang, Biyu;Zhang, Anan;Fang, Wei
    • Journal of Electrical Engineering and Technology
    • /
    • 제11권1호
    • /
    • pp.65-75
    • /
    • 2016
  • Aiming at analyzing the power flow of the distribution systems with distribution transformer (DT) branches and PV nodes, a hybrid three-phase power flow methodology is presented in this paper. The incidence formulas among node voltages, loop currents and node current injections have been developed based on node-branch incidence matrix of the distribution network. The method can solve the power flow directly and has higher efficiency. Moreover, the paper provides a modified method to model DT branches by considering winding connections, phase shifting and off-nominal tap ratio, and then DT branches could be seen like one transmission line with the proposed power flow method. To deal with the PV nodes, an improved approach to calculate reactive power increment at each PV node was deduced based on the assumption that the positive-sequence voltage magnitude of PV node is fixed at a given value. Then during calculating the power flow at each iteration, it only needs to update current injection at each PV node with the proposed algorithm. The process is very simple and clear. The results of IEEE 4 nodes and the modified IEEE 34 nodes test feeders verified the correctness and efficiency of the proposed hybrid power flow algorithm.

배전시스템의 신뢰도에 관한 연구 (A Study on the Reliability of Electric Power Distribution System)

  • 김경철;최홍규;원진희
    • 조명전기설비학회논문지
    • /
    • 제16권3호
    • /
    • pp.61-66
    • /
    • 2002
  • 배전시스템은 고 신뢰도가 요구되는 사례시스템이다. 신뢰도는 정해진 기간과 운전 조건하에서 설비나 시스템이 적절히 자기 기능을 할 수 있는 확률로 정의된다 수용가에서 배전시스템의 성능을 예측하고 검증하기 위한 기본적인 신뢰지수는 평균고장률, 평균고장기간, 평균 활용률 등이 포함된다 본 논문에서는 EDSA의 배전계통 신뢰도 평가 프로그램을 이용하여 배전 시스템의 기본적인 신뢰도 평가지수를 구하고, 수지식 사례 배전시스템을 개선시키기 위한 방법으로 환상식 시스템으로 구성을 변경시켜 수치적으로 얼마나 높은 신뢰도가 얻어졌는지를 보여준다.

연계선로가 없는 배전선로에서 BESS기반 정전복구를 위한 토폴로지 재구성 방안 (A Network Reconfiguration Method for BESS based Service Restoration in Distribution Systems)

  • 임성일
    • 전기학회논문지
    • /
    • 제66권10호
    • /
    • pp.1460-1465
    • /
    • 2017
  • Outage areas can be transferred to adjacent feeders to restore power supply in case of the fault on the distribution system. Feeders in the small island or mountain area may not have backup feeders due to the low density of load. In this weakly meshed open loop system, BESS can be used as a backup feeder to improve reliability of power supply. This paper proposes a new network reconfiguration method for BESS based service restoration. Fuzzy decision making technique is adopted to deal with fuzziness of service restoration planning rules. Case studies using KEPCO real distribution system have been performed to verify feasibility of the proposed method.

Crack behaviour of top layer in layered rocks

  • Chang, Xu;Ma, Wenya;Li, Zhenhua;Wang, Hui
    • Geomechanics and Engineering
    • /
    • 제16권1호
    • /
    • pp.49-58
    • /
    • 2018
  • Open-mode cracks could be commonly observed in layered rocks. A concept model is firstly used to explore the mechanism of the vertical cracks (VCs) in the top layer. Then the crack behaviour of the two-layer model is simulated based on a cohesive zone model (CZM) for layer interfaces and a plastic-damage model for rocks. The model indicates that the tensile stress normal to the VCs changes to compression if the crack spacing to layer thickness ratio is lower than a threshold. The results indicate that there is a threshold for interfacial shear strength that controls the crack patterns of the layered system. If the shear strength is lower than the threshold, the top layer is meshed by the VCs and interfacial cracks (ICs). When the shear strength is higher than the threshold, the top layer is meshed by the VCs and parallel cracks (PCs). If the shear strength is comparative to the threshold, a combining pattern of VCs, PCs and ICs for the top layer can be formed. The evolutions of stress distribution in the crack-bound block indicate that the ICs and PCs can reduce the load transferred for the substrate layer, and thus leads to a crack saturation state.

네트워크 배전계통용 통신기반 보호협조에 관한 연구 (A study of communication-based protection coordination for networked distribution system)

  • 김우현;채우규;황성욱;이학주
    • KEPCO Journal on Electric Power and Energy
    • /
    • 제8권1호
    • /
    • pp.43-48
    • /
    • 2022
  • Although the distribution system has been structured as complicated as a mesh in the past, the connection points for each line are always kept open, so that it is operated as a radial distribution system (RDS). For RDS, the line utilization rate is determined according to the maximum load on the line, and the utilization rate is usually kept low. In addition, when a fault occurs in the RDS, a power outage of about 3 to 5 minutes occurs until the fault section is separated, and the healthy section is transferred to another line. To improve the disadvantages of the RDS, research on the construction of a networked distribution system (NDS) that linking multiple lines is in progress. Compared to the RDS, the NDS has advantages such as increased facility utilization, load leveling, self-healing, increased capacity connected to distributed generator, and resolution of terminal voltage drop. However, when a fault occurs in the network distribution system, fault current can flow in from all connected lines, and the direction of fault current varies depending on the fault point, so a high-precision fault current direction determination method and high-speed communication are required. Therefore, in this paper, we propose an accurate fault current direction determination method by comparing the peak value polarity of the fault current in the event of a fault, and a communication-based protection coordination method using this method.

네트워크 배전계통용 백업 보호협조에 관한 연구 (Research on Backup Protective Coordination for Distribution Network)

  • 김우현;채우규;황성욱;김주용
    • KEPCO Journal on Electric Power and Energy
    • /
    • 제8권1호
    • /
    • pp.15-19
    • /
    • 2022
  • The radial distribution systems (RDS) commonly used around the world has the following disadvantages. First, when the DL is operated on a radial system, the line utilization rate is usually kept low. Second, if a fault occurs in the radial DL, a power outage of 3 to 5 minutes is occurring depending on the operator's proficiency and fault situation until the fault section is separated and the normal section is replaced. To solve this problem, Various methods have been proposed at domestic and foreign to solve this problem, and in Korea, research is underway on the advanced system of operating multiple linked DL always. A system that is electrically linked always, and that is built to enable high-speed communication during the protection coordination is named networked distribution system (NDS). Because the load shares the DL, the line utilization rate can be improved, and even if the line faults, the normal section does not need to be cut off, so the normal section does not experience a power outage. However, since it is impossible to predict in which direction the fault current will flow when a failure occurs in the NDS, a communication-based protection coordination is used, but there is no backup protection coordination method in case of communication failure. Therefore, in this paper, we propose a protective cooperation method to apply as a backup method when communication fails in NDS. The new method is to change TCC by location of CB using voltage drop in case of fault.