• Title/Summary/Keyword: Mesh module

Search Result 56, Processing Time 0.027 seconds

Phosphorus Removal and Operating Performance of Mesh Filtration Bio-reactor with the Addition of Alum (Alum 주입 메쉬 침지 여과분리형 생물반응조의 운전 특성과 인 제거)

  • Jung, Yong-Jun;Min, Kyung-Sok
    • Journal of Korean Society on Water Environment
    • /
    • v.21 no.5
    • /
    • pp.458-463
    • /
    • 2005
  • Considering the characteristics of a filtration bio-reactor equipped with a mesh filter module which can effectively maintain high concentration of biomass and enhanced solid-liquid separation performance, the hybrid process of filtration bio-reactor combined with coagulation was investigated to get improved filtration characteristics as well as water quality in this work. Two bio-reactors (Run-1 & Run-2) were operated under the following conditions: working volume of 25 L, continuous loading of a synthetic wastewater (BOD: 200 mg/L, T-N: 50 mg/L, T-P: 5 mg/L), where an appropriate amount of alum ($Al_2(SO_4)_3{\cdot}18H_2O$) was added once a day into the reactor (Run-2). In the system without using a alum (Run-1), the clogging of mesh filter module was observed two times through 85 days of whole operation. Meanwhile, the filter module did not clog even at higher MLSS concentration (6,000~12,000 mg/L) and the stable filtration (0.7 mid) was continued in the case of using a alum. Due to the stable formation of cake layers, BOD and SS were shown below 6 and 3 mg/L, respectively. T-P and pH of the effluent were changed because of the intermittent addition of the alum. In the case of Al/P=2.5, the average T-P removal efficiency per day was 85.2% and the average T-P concentration of the effluent was 0.3 mg/L. However, the removal efficiency of phosphate was influenced by pH in the reactor.

대형단조에서의 미세기공 압착해석을 위한 유한요소법의 Global/Local 기법

  • 박치용;영동열
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1996.04a
    • /
    • pp.819-823
    • /
    • 1996
  • In the large steel ingosts, void defects exhibiting microvoid shapes are inevitably formed in the V-segregation zone of the ingots during solidification. In the hot open-die forging process, material properties are improved by eliminating internal porosity. The void size is practically very small as compared with the huge large ingot. Thus, for deformation analysis of a large ingot, a massive number of elements are needed in order to describe a void surface and to uniform mesh sturcture. In the present work the Global/Local scheme has been introduced in order to reduce the computational time and to easily generate the mesh system as a void module of local mesh for obtaining the accurate solution around a void. The procedure of the global- local method consists of two steps. In the first step global analysis is carried out which seeks a reasonably good solution with a cpurse mesh system without describing a void. Then, a local analysis is performed locally with a fine mesh system under the size-criterion of a local region. The computational time has been greatly reduced. Though the work it has been shown that large ingot forging incorporation small voids can be effectively analyzed by using the proposed Global/Local scheme.

  • PDF

A Study on Implementation of Zigbee Module based on CC520 (CC2520 기반의 지그비 모듈 구현에 대한 연구)

  • Moon, Yong-Seon;Bae, Young-Chul;Roh, Sang-Hyun
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.5 no.6
    • /
    • pp.664-671
    • /
    • 2010
  • In this paper, we developed a Zigbee module based on CC2520 which is possible to construct the mesh network and also support to Zigbee Pro standard as a preceding research of autonomous moving of mobile robot using Zigbee. After manufacturing the Zigbee module, we selected antenna to fit Zigbee wireless frequency band using network analyze as means performance improvement. We also carry out an impedance matching of Zigbee module, extend the possible distance of two-way wireless communication and ensure the safety of communication.

Automated Finite Element Analyses for Structural Integrated Systems (통합 구조 시스템의 유한요소해석 자동화)

  • Chongyul Yoon
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.37 no.1
    • /
    • pp.49-56
    • /
    • 2024
  • An automated dynamic structural analysis module stands as a crucial element within a structural integrated mitigation system. This module must deliver prompt real-time responses to enable timely actions, such as evacuation or warnings, in response to the severity posed by the structural system. The finite element method, a widely adopted approximate structural analysis approach globally, owes its popularity in part to its user-friendly nature. However, the computational efficiency and accuracy of results depend on the user-provided finite element mesh, with the number of elements and their quality playing pivotal roles. This paper introduces a computationally efficient adaptive mesh generation scheme that optimally combines the h-method of node movement and the r-method of element division for mesh refinement. Adaptive mesh generation schemes automatically create finite element meshes, and in this case, representative strain values for a given mesh are employed for error estimates. When applied to dynamic problems analyzed in the time domain, meshes need to be modified at each time step, considering a few hundred or thousand steps. The algorithm's specifics are demonstrated through a standard cantilever beam example subjected to a concentrated load at the free end. Additionally, a portal frame example showcases the generation of various robust meshes. These examples illustrate the adaptive algorithm's capability to produce robust meshes, ensuring reasonable accuracy and efficient computing time. Moreover, the study highlights the potential for the scheme's effective application in complex structural dynamic problems, such as those subjected to seismic or erratic wind loads. It also emphasizes its suitability for general nonlinear analysis problems, establishing the versatility and reliability of the proposed adaptive mesh generation scheme.

Implementation of Temperature and Humidity Sensor Module Based on Z-wave (Z-Wave 기반의 온습도 센서 모듈 구현)

  • Weon, La kyoung
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.21 no.4
    • /
    • pp.157-166
    • /
    • 2022
  • The most commonly used wireless communication technologies in IoT technology include ZigBee, WiFi, Bluetooth, and Z-Wave. In particular, Z-Wave is currently one of the preferred wireless communication technologies, with a global market share of 60 % of these technologies. In this research, a temperature and humidity sensor module using a Z-wave protocol was designed and manufactured by referring to the data sheet. Subsequently, the Z-Wave protocol was analyzed during the operation of the sensor module, and the firmware of the controller module was mounted and implemented. In addition, a program for monitoring the temperature and humidity information from the sensor module was developed and validated. Finally, the performance of the sensor module was validated through master distance and low power tests on it and its reception data success rate.

Virtual Optimal Design of Satellite Adapter in Parallel Computing Environment (병렬 컴퓨팅 환경 하에서 인공위성 어댑터 가상최적설계)

  • Moon, Jong-Keun;Yoon, Young-Ha;Kim, Kyung-Won;Kim, Sun-Won;Kim, Jin-Hee;Kim, Seung-Jo
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.35 no.11
    • /
    • pp.973-982
    • /
    • 2007
  • In this paper, optimal design framework is developed by automatic mesh generation and PSO(Particle Swarm Optimization) algorithm based on parallel computing environment and applied to structural optimal design of satellite adapter module. By applying automatic mesh generation, it became possible to change the structural shape of adapter module. PSO algorithm was merged with parallel computing environment and for maximizing a computing performance, asynchronous PSO algorithm was developed and could reduce the computing time of optimization process. As constraint conditions, eigen-frequency and maximum stress was considered. Finally using optimal design framework, weight reduction of satellite adapter module is derived with satisfaction of structural safety.

An Efficient Load Balancing Scheme for Multi-Gateways in Wireless Mesh Networks

  • Liu, Junping;Chung, Sang-Hwa
    • Journal of Information Processing Systems
    • /
    • v.9 no.3
    • /
    • pp.365-378
    • /
    • 2013
  • In Wireless Mesh Networks (WMNs), we usually deploy multiple Internet Gateways (IGWs) to improve the capacity of WMNs. As most of the traffic is oriented towards the Internet and may not be distributed evenly among different IGWs, some IGWs may suffer from bottleneck problem. To solve the IGW bottleneck problem, we propose an efficient scheme to balance the load among different IGWs within a WMN. Our proposed load-balancing scheme consists of two parts: a traffic load calculation module and a traffic load migration algorithm. The IGW can judge whether the congestion has occurred or will occur by using a linear smoothing forecasting method. When the IGW detects that the congestion has occurred or will occur, it will firstly select another available IGW that has the lightest traffic load as the secondary IGW and then inform some mesh routers (MPs) which have been selected by using the Knapsack Algorithm to change to the secondary IGW. The MPs can return to their primary IGW by using a regression algorithm. Our Qualnet 5.0 experiment results show that our proposed scheme gives up to 18% end-to-end delay improvement compared with the existing schemes.

Blank Design in Sheet Metal forming Process Using the Rollback Method (롤백방법을 이용한 박판금속성형공정에서의 블랭크 설계)

  • 김종엽;김낙수;허만성
    • Transactions of Materials Processing
    • /
    • v.8 no.5
    • /
    • pp.454-464
    • /
    • 1999
  • A new blank design method is proposed to predict the optimum initial blank shape in the sheet metal forming process. The rollback method for blank shape design takes the difference between the deformed blank contour and the target contour shape into account. the minimization object function R is proposed. Based on the method, a computer program composed of blank design module, FE-analysis module and mesh generation module is developed. The rollback method is applied to square cup, reentrant cross section, L-shaped cup drawing process with the flange of uniform size around its periphery to confirm its validity. The optimum initial blank shape is obtained from an arbitrary blank shape after several modifications. Good agreements are recognized between the numerical results and the published experimental results for initial blank shape and thickness strain distribution. It is concluded that the rollback method is an effective and convenient method for an optimum blank shape design.

  • PDF

Development of Pre-Postprocessing Toolbox for Elasto-plastic Analysis of Underground Structures with Water Flow (지하수 흐름을 고려한 지하구조계의 탄소성해석에 대한 전-후처리기법의 개발)

  • 김문겸;임성철;이재영;송재성
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1997.04a
    • /
    • pp.79-86
    • /
    • 1997
  • In this study, pre-postprocessing toolbox is developed to perform elasto-plastic analyze of underground structures with transient ground water flow. This toolbox is composed of three modules. The first is the data input processor for the structural analysis. The preprocessing Is using GUI (Graphic User Interface), which is consist of dialog box, pull down, and short-cut icon, etc. The second is the structural analysis module. The analysis is based on the elasto-plastic finite element method involving additional options such as ground excavation effect, transient ground water flow, and rock bolts behavior. The last is the postprocessing module. The postprocessing is able to verify the result of the structural analysis by the graphical simulation which visualizes the element mesh, the node displacements, the element stress states, the stress contour, the ground water surface, and the rock bolt stresses. Since various options are considered separately in this toolbox, it is easy to modify the module of each processing, and to update other functional modules for the given analysis conditions.

  • PDF

Development of Methodology for Fracture Network Analysis in the Unsaturated Zone using MINC Approach in TOUGH2 Code (TOUGH2 전산코드의 MINC 기법을 이용한 불포화 암반 내 단열 해석 방법론 개발)

  • Ha, Jaechul;Cheong, Jae-yeol;Kim, Soogin;Yoon, Jeonghyoun
    • The Journal of Engineering Geology
    • /
    • v.26 no.3
    • /
    • pp.325-330
    • /
    • 2016
  • The second phase of low- and intermediate-level waste (LILW) disposal facility is under planned on the sedimentary rock in unsaturated zone. In this study, we created two meshes which were a matrix continuum mesh and a fracture continuum mesh to carry out 2 dimensional numerical modeling for groundwater flow in the unsaturated zone containing fractures focused on the second phase of LILW disposal facility. Two continuum meshes were developed using MINC in meshmaker module of TOUGH2 code. A fracture continuum mesh was included the k-field distribution of the permeability derived from the Discrete Fractured Network (DFN) modeling. To apply the unsaturated zone for the modeling, the gridding steps to generate mesh were developed. Each step to generate a mesh consisted of definition of materials, setting the initial conditions and creating grids using MINC. The methodology development of meshes in this study will be applied for more precise modeling of groundwater flow and mass transport.