• Title/Summary/Keyword: Mesh grounding system

Search Result 20, Processing Time 0.028 seconds

The Comparison on Grounding Characteristics for 3 Grounding Systems (3가지 접지방식에 대한 접지특성비교)

  • Shin, Dong-Ho;Kim, Yong;Baek, Soo-Hyun;Lee, Eun-Young;Kim, Pill-Soo;Cho, Dae-Hoon
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.49 no.6
    • /
    • pp.289-297
    • /
    • 2000
  • This paper presents a comparison on the resistance and characteristics of transient response of grounding systems under surge currents using frequency domain electromagnetic field analysis software package and field test. Analysis is done by computer model, based on electromagnetic field theory approach, that accurately takes into account frequency dependent characteristics of the system. The transient performance of three grounding systems is analyzed by comparison of frequency dependent impedance and the maximal transient GPR. A double exponential lighting surge current is injected at one corner of the grounding systems. The transient GPRs a rod grounding systems are higher than mesh or electrolytic grounding systems. Af field test, the results of resistance measurement and time-variant of ground resistance slightly reduce electorlytic grounding systems less than rod and mesh grounding systems.

  • PDF

Study to Analyze the Grounding System in the 20 kHz Power Installation (20 kHz 전력설비 접지시스템 분석에 관한 연구)

  • Jung, Jin-Soo;Han, Woon-Ki;Park, Chan-Urm;Song, Young-Sang;Lim, Hyun-Sung
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.62 no.9
    • /
    • pp.1308-1312
    • /
    • 2013
  • In this paper, carried out for optimal ground system for ensuring safety for electricity used to power equipment in the 20 kHz frequency. Now the grounding system of the mesh electrode, electrode rods are installed for power plant safety and protection against electric shock. However, the electrical equipment grounding system in the 20 kHz were considering the increasing grounding impedance due to the high frequency and the magnetic shielding. But until now, there has been little research on the grounding system. To solve this problem, In this paper was proposed optimal grounding system due to the experiment using a mesh electrode, rod electrode, aluminum plate electrodes. Measurement results, grounding resistance was depending on the material of the electrode grounding resistance. In addition, the leakage current (induced) appeared to be affected depending on the type of electrode.

The Analysis of Ground Potential Rise for Shapes of Grounding Electrode Using Hemispherical Grounding Simulation System (반구형 접지모의시스템을 이용한 접지전극의 형상에 따른 대지전위상승의 분석)

  • Gil Hyoung-Jun;Choi Chung-Seog;Lee Bok-Hee
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.54 no.7
    • /
    • pp.319-325
    • /
    • 2005
  • In order to analyze ground potential rise of grounding system installed in buildings, the hemispherical grounding simulation system has been designed and fabricated as substantial and economical measures. Ground potential rise(GPR) has been measured and analyzed for shapes of grounding electrode using the system in real time. The system is apparatus to have a free reduced scale for conductor size and laying depth of a full scale grounding system and is constructed so that a shape of equipotential surface is nearly identified a free reduced scale with a real scale when a current flows through grounding electrode. The system was composed of a hemispherical water tank, AC Power supply, a movable potentiometer, and test grounding electrodes. The test grounding electrodes were fabricated through reducing grounding electrode installed in real buildings such as rod type, mesh grid type. When a mesh grid type was associated with a rod type, GPR was the lowest value. The proposed results would be applicable to evaluate GPR in the grounding systems. and the analytical data can be used 0 stabilize the electrical installations and prevent the electrical disasters.

Ground Impedance and Frequency Response Characteristics of Large-scale Ground Rods (대형 봉상 접지전극의 접지임피던스와 주파수 응답특성)

  • Lee, Bok-Hee;Eom, Ju-Hong;Kim, Tai-Doo;Chung, Dong-Chul;Kil, Hyeong-Joon
    • Proceedings of the KIEE Conference
    • /
    • 2003.07c
    • /
    • pp.1791-1793
    • /
    • 2003
  • In order to analyze the dynamic characteristics of ground impedance in large grounding system for lightning and surge protections, a novel method for measuring the ground impedance as a function of frequency was proposed. The experiments were carried out in the grounding system composed of ground rods and mesh grids. The test current was injected by the variable frequency inverter whose frequency is linearly controlled in the range of $5{\sim}500$kHz. The ground impedance and frequency response of the grounding system were mainly caused by the inductive current flowing through grounding conductors over the frequency of 2002. In the combined grounding system of rods and mesh grids, inductive component of ground impedance was significantly decreased. It was fumed out that the grounding system is effective for the surge protection.

  • PDF

An experimental research about the grounding resistance of the mesh electrode in the model of water tank (메쉬접지극의 접지저항에 관한 실증연구)

  • Kim, Ju-Chan;Choi, Jong-Gyu;Lee, Chung-Sik;Koh, Hee-Seog
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • 2005.05a
    • /
    • pp.349-354
    • /
    • 2005
  • Recently, there are many equipment of electricity, electronics, and communication which need to grounding in the building. When the electric current flows into a certain grounding system in the same building, the potential rise of other grounding system is possible to be affected by its potential rise. This potential interference was affected by the surface potential, it is deeply related whit the electrode shape. In this paper, basic formula is deduced on the basis of both electrodes surface potential of grounding electrode in a source of the potential interference and groundidng electrode which receive the potential interference. Therefore the degree of potential interference as multiple groundidng electrode can be verified the simulated results by means of the simple model in advance. This is for investigating the grounding resistance of grounding electrodes, the experiment was performed with model-scale of the grounding system and the scaled model grounding system was to this experiment using a water tank of a stainless steel-hemisphere shape. since mesh electrodes have been widely in the general building, we're tried to analyze that this water tank model and it's simulation as well.

  • PDF

Study for the Grounding Resistance of the Mesh Grounding Electrode by Water Tank Model (수조모델을 이용한 메쉬접지극의 접지저항에 관한 연구)

  • Kim, Ju-Chan;Kim, Sung-Sam;Choi, Jong-Gyu;Lee, Chung-Sik;Koh, Hee-Seog
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.20 no.3
    • /
    • pp.28-35
    • /
    • 2006
  • Recently, a number of equipments related with electricity, electronics, and communication in the same building are needed to the grounding system for safety from unexpected accidents. When the faulted electric current flows into a certain grounding system, the potential rise in that system takes place and it might induce the potential rise to other grounding system. This potential interference was strongly affected by the surface potential, which was deeply related with the electrode shape. In this paper, the fundamental formula was deduced on the basis of surface potential of two grounding electrodes. Which corresponds to source of the potential interference and other grounding electrode, respectively. Therefore, the degree of potential interference in this mesh grounding electrode system was verified by the simple model simulation. In addition, in order to identify the difference between the grounding resistance in the realistic construction site and the expected value from the corresponding simulation, the experiment was performed with model on a reduced scale about the realistic grounding system. It consists of stainless steel hemisphere electrodes in a water tank. From this work, the grounding resistance in the mesh grounding electrode showed the good coincidence results between those. Consequently, it is confirmed that the grounding resistance in the mesh electrode is possible to be estimated by performing the experiment using the water tank model.

Mesh Grounding Grid Design of Dangerous Voltage Review (위험전압 검토에 의한 메시접지설계)

  • Son, Seok-Geum;Kim, Jae-Chul
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.60 no.3
    • /
    • pp.120-125
    • /
    • 2011
  • When we design the grounding grid, dangerous voltage ANSI/IEEE Std. 80 method has been commonly used in the domestic area. However, the suitability of the ground rules for the design environment available. However, the suitability of the ground rules for the design environment available. In this paper, sticks according to the electrode conductor in combination with the mesh in order to design the ground by the IEEE Std.80 was designed. So in this paper, we examined of IEEE Std. 80 touch voltage method marginal utility and we induced for those problems by comparison between IEEE Std. 80 touch voltage value and simulation experimentation value. Furthermore, this paper presents a new design grounding system method that complements the IEEE Std. 80 method.

An Improved Method for Mesh Grounding System Using Spaced Arrangement of Grounding Conductor (접지도체의 간격배치에 따른 개선된 접지설비 모델)

  • Song, Young-Joo;Choi, Hong-Kyoo
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.19 no.3
    • /
    • pp.57-65
    • /
    • 2005
  • No matter how well the equally spaced grounding grid is designed, there we questions keep rising, such as leakage of current from comer conductor, high voltage of touch voltage in comers of grid than in center, and high material cost for grounding grid. The best-fitted design for unequally spaced grounding grid is a part that must be considered. Explain advantages of unequally spaced grounding grid and lead formula by dividing the number of grid division, j, into 20, instead of 7. Then, present Dij, which is optimum rate for unequally spaced grounding grid and verify safety and economy of the unequally spaced grounding grid by computer simulation with a poly-nominal function form.

A Safety Assessment of a Mesh Grounding System for 22.9kV Substations (22.9kV 수전설비 Mesh 접지설계의 안전성 평가 사례)

  • Park, Sang-Gyo;Choi, Chang-Kyu
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.27 no.5
    • /
    • pp.54-60
    • /
    • 2013
  • There is increasing demand for practical groundings for small-area substations because of the recent revision of Korea's Electrotechnical Regulations, which necessitates the method of evaluating their safety. This paper proposes a practical mesh grounding system for 22.9kV substations and studies how to evaluate its safety. The proposed grounding system is proved to obey the safety criteria of ANSI/IEEE Std. 80 via ANSI/IEEE Std. 80 method and computer simulation.

An experimental research for Potential Interference of a Mesh electrode in Intelligent Building System (지능형빌딩의 대단위접지극의 전위간섭에 대한 실증연구)

  • Koh, Hee-Seog;Kim, Ju-Chan;Choi, Jong-Gyu;Kim, Maeng-Hyun
    • Proceedings of the KIEE Conference
    • /
    • 2005.07a
    • /
    • pp.414-416
    • /
    • 2005
  • This is for investigating the grounding resistance of grounding electrodes, the experiment was performed with model-scale of the grounding system and the scaled model grounding system was to this experiment using a water tank of a stainless steel-hemisphere shape. since mesh electrodes have been widely in the general building, we're tried to analyze that this water tank model and it's simulation as well.

  • PDF