• Title/Summary/Keyword: Mesh Voltage

Search Result 77, Processing Time 0.028 seconds

Suppression of silicon clusters using a grid mesh under DC bias

  • Kim, Yonwon;Kang, Jun
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.41 no.2
    • /
    • pp.146-149
    • /
    • 2017
  • Si clusters generated during the plasma chemical vapor deposition (CVD) process have a great influence on the quality of the fabricated films. In particular, in hydrogenated amorphous silicon thin films (a-Si:H) used for thin film solar cells, Si clusters are mainly responsible for light-induced degradation. In this study, we investigated the amount of clusters incorporated into thin films using a quartz crystal microbalance (QCM) and specially designed cluster eliminating filters, and investigated the effect of the DC grid mesh in preventing cluster incorporation. Experimental results showed that as the applied voltage of the grid mesh, which is placed between the electrode and the QCM, decreased, the number of clusters incorporated into the film decreased. This is due to the electrostatic force from the grid mesh bias, and this method is expected to contribute to the fabrication of high-quality thin films by preventing Si cluster incorporation.

EMI Mesh Development for the PDP using Electroforming (Electroforming을 이용한 PDP용 EMI 메시 개발)

  • Kwon, H.H.;Beom, M.W.;Lim, S.Y.;Hwang, C.S.;Park, D.S.;Lee, T.W.
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.20 no.1
    • /
    • pp.108-113
    • /
    • 2011
  • There are a lot of PDP TV for a plasma discharge pulse voltage generated by the use of electromagnetic waves. EMI mesh film is near Infrared ray caused by malfunction of the remote control intended to prevent this phenomenon. In this study, the formation of fine pattern by making the mold is imprinted on the film sheet. EMI mesh film has been granted by filling in the conductive material region imprinted with electroforming in the manufacture of resistance. The fine patterns fabricated with electroforming facility thickness of homogenization process technology were established to optimize the working conditions.

Enhanced Electrochemical Properties of Dye-sensitized Solar Cells Using Flexible Stainless Steel Mesh Electrodes with Ti Protective Layer (Ti 보호층이 형성된 스테인레스 스틸 메쉬 전극을 이용한 염료감응형 태양전지의 전기 화학적 특성 개선)

  • Jung, Haeng-Yun;Ki, Hyun-Chul;Gu, Hal-Bon
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.28 no.3
    • /
    • pp.180-184
    • /
    • 2015
  • Stainless steel (SS) mesh was used to fabricate photoelectrode for flexible dye-seisitzed solar cells (DSSCs) in order to evaluate them as replacements for more expensive transparent conductive oxide(TCO). We fabricated the DSSCs with new type of photoelectrode, which consisted of flexible SS mesh coated with 100 nm thickness titanium (Ti) protective layer deposited using electron-beam deposition system. SS mesh DSSCs with protective layer showed higher efficiency than those without a protective layer. The best cell property in the present study showed the open circuit voltage (Voc) of 0.608 V, short-circuit current density (Jsc) of $5.73mA\;cm^{-2}$, fill factor (FF) of 65.13%, and efficiency (${\eta}$) of 2.44%. Compared with SS mesh based on DSSCs (1.66%), solar conversion of SS mesh based on DSSCs with protective layer improved about 47%.

Active-Matrix Field Emission Display Based on CNT Emitter and a-Si TFT

  • Song, Yoon-Ho;Kim, Kwang-Bok;Hwang, Chi-Sun;Lee, Sun-Hee;Park, Dong-Jin;Lee, Jin-Ho;Kang, Kwang-Yong;Hur, Ji-Ho;Jang, Jin
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.923-926
    • /
    • 2004
  • Active-matrix field emission display (AMFED) based on carbon nanotube (CNT) emitter and amorphous silicon thin-film transistor (a-Si TFT) is reviewed. The AMFED pixels consisted of a high-voltage a-Si TFT and mesh-gated CNT emitters. The developed AMFED panel showed a high performance with a driving voltage of below 15 V. The low-cost and large-area AMFED approach with a metal mesh technology will be discussed.

  • PDF

Investigation of Applyed Limit on IEEE Std-2000 for Mesh Voltage Equations (IEEE Std-2000의 메쉬전압식 적용한계의 검토)

  • Moon, Tae-Hwan;Lee, Min-Myung;Jung, Gil-Jo;Yun, Jang-Wan
    • Proceedings of the KIEE Conference
    • /
    • 2001.07a
    • /
    • pp.368-370
    • /
    • 2001
  • There are various shapes such as square, rectangular, L, and T type in the grounding systems of substations. IEEE St-d suggests the formula considering the characteristics of the various grounding systems but the final value can not be taken, and them the analysis of complicated computer program for obtaining the more accurate value is needed. In his paper, by using CDEGS(Current, Distribution, Electromagnetic and Soil Structure Analysis) the estimated functions derives form the modification coefficient for each of various types above mentioned. The mesh voltage expected can be obtained without the conventional expensive program using compensating methods that multiply IEEE formula by the estimated function.

  • PDF

Measurement and Analysis of the Dangerous Voltage Around Grounding Electrode for Safety in Substation Ground (변전소 접지설계를 위한 접지전극 주변의 위험전압 측정과 분석)

  • Son, Seok-Geum;Kim, Jae-Chul
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.60 no.4
    • /
    • pp.214-219
    • /
    • 2011
  • The substation grounding design,"IEEE Guide for Safety in AC Substation Grounding (ANSI / IEEE Std 80)"has been widely used. Substation grounding design and substation grounding resistance of grounding network site to predict the voltage at the risk of a very important task, which is a ground fault current due to the influx of the ground network and due to rise in the Earth's potential can be applied to human dangerous Voltage within safe tolerances be configured to be the ground because the network. IEEE Std. 80 for the substation construction safety equipment on the ground securing the ground electrode and the mesh around the boundary potential distribution in terms of risk analysis by the touch voltage and the reference was to clean up the definition and the basic steps of the voltage of the voltage limits the risk of peripheral grounding electrode Suppression by the simulator through a new secure from dangerous voltage design techniques were presented.

The Output Characteristics and the Optimization of Parallel-mesh Circuit of a Pulsed Nd:YAG Laser by Using a Circular Cavity (원형 Cavity를 이용한 펄스형 Nd:YAG레이저의 출력특성 및 병렬메쉬 회로의 최적화)

  • Yang, D.M.;Kim, B.G.;Park, K.R.;Hong, J.H.;Kang, W.;Kim, W.Y.;Kim, H.J.
    • Proceedings of the KIEE Conference
    • /
    • 1999.07e
    • /
    • pp.2201-2203
    • /
    • 1999
  • In this study, we have designed and manufactured not a present elliptic cavity but a circular cavity and we have experimented the operational characteristics. As a result, we obtained the maximum efficiency of 2.1 %. It didn't have any difference compared with elliptic cavity. A circular cavity is much more compact, so far easier to be manufactured than a elliptic cavity. And it can be made at a low cost. At the input energy, parameter $\alpha$, input voltage, and pulse width were in the same condition, we have decided to the optimization of the mesh number of a parallel-mesh circuit which was connected with main power supply.

  • PDF

Reduction of Height of Taylor Cone Caused by Water Surface Discharge and Its Ozone Generation Characteristics (수표면방전의 방전 수돌기의 높이제한과 오존발생특성)

  • Park, Seung-Lok;Kim, Jin-Gyu;Kim, Ju-Yong;Lee, Dae-Hee;Moon, Jae-Duk
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.50 no.7
    • /
    • pp.334-339
    • /
    • 2001
  • A silent type ozone generator using water surface has been studied and improved its ozone generation characteristics by the controlling the height of Taylor cone by installing a mesh electrode, a dielectric bed of glass beads in the just under th surface of the water. The current-voltage characteristics and characteristics of ozone generation quantity of the test system were investigated and discharge current oscillograms of the each cases of the mesh electrode and the beds were observed and compared each other to analyze the discharge conditions. The Taylor cone height could be the cause of the discharge bridge to decrease the ozone generation on the discharge spacing. In this study, the hight of Taylor cone could be reduced greatly by installing the mesh and the glass beads bed just under the water surface. Therefore a higher ozone generation also could be obtained.

  • PDF

A Development and Performance Test of Voltage Measurement Accuracy Assessment System for Distribution Equipment (배전기기 전압계측 정밀도 평가시스템 개발 및 성능시험)

  • Cho, Jin-Tae;Kim, Ju-Yong;Lee, Hak-Ju;Kim, Jae-Han
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.27 no.9
    • /
    • pp.83-89
    • /
    • 2013
  • Power distribution system has been changed from radial system to closed loop or mesh system due to connection of distributed generation growth. Data from distribution equipments which are installed at distribution line is required to be accurate for the performance of DMS(Distribution Management System). This paper analyzes the voltage measurement data from distribution equipment. However, the results of the analysis are confirmed to have some errors in voltage measurement data from distribution equipment. These errors come from aging of voltage sensor in distribution equipment and inaccurate data transfer to FRTU(feeder remote terminal unit) through the controller. The main problem is that the voltage measurement data of distribution equipment can not be assessed after it's first installation at the distribution line. The voltage measurement accuracy assessment system is to assess the voltage measurement data from distribution equipment on hot-line. This study had a field test to verify the performance of system.

Measurement and Analysis of Risk Voltages in a Grounding System (접지계에서 위험전압의 측정과 분석)

  • Jin, Chang-Hwan;Park, Dae-Won;Seo, Jae-Seok;Kil, Gyung-Suk;Gil, Hyeong-Jun
    • Proceedings of the KSR Conference
    • /
    • 2011.10a
    • /
    • pp.3099-3103
    • /
    • 2011
  • In measurement of risk voltages; the step and touch voltage, the distance between the current electrode and the ground electrode recedes up to several hundred meters as the scale of grounding system increases. This paper dealt with the measurement method of risk voltage in a restricted space. The risk voltage was analyzed depending on the distance and the direction of the current electrode from the ground electrode in a $10[m]{\times}10[m]$ mesh grounding system. The average value of risk voltages measured at a point 20 [m] away from the current electrode was deviated below 5 [%] from that measured at 100 [m] point. Consequently, the evaluation of risk voltage of a large-scale grounding system buried in a spatially restricted place is available if the current electrode is installed in symmetry to the ground electrode.

  • PDF