• Title/Summary/Keyword: Mesh Pattern

Search Result 218, Processing Time 0.032 seconds

Filling and Wiping Properties of Silver Nano Paste in Trench Layer of Metal Mesh Type Transparent Conducting Electrode Films for Touch Screen Panel Application (실버 나노분말을 이용한 메탈메쉬용 페이스트의 충전 및 와이핑 특성)

  • Kim, Gi-Dong;Nam, Hyun-Min;Yang, Sangsun;Park, Lee-Soon;Nam, Su-Yong
    • Journal of Powder Materials
    • /
    • v.24 no.6
    • /
    • pp.464-471
    • /
    • 2017
  • A metal mesh TCE film is fabricated using a series of processes such as UV imprinting of a transparent trench pattern (with a width of $2-5{\mu}m$) onto a PET film, filling it with silver paste, wiping of the surface, and heat-curing the silver paste. In this work nanosized (40-50 nm) silver particles are synthesized and mixed with submicron (250-300 nm)-sized silver particles to prepare silver paste for the fabrication of metal mesh-type TCE films. The filling of these silver pastes into the patterned trench layer is examined using a specially designed filling machine and the rheological testing of the silver pastes. The wiping of the trench layer surface to remove any residual silver paste or particles is tested with various mixture solvents, and ethyl cellosolve acetate (ECA):DI water = 90:10 wt% is found to give the best result. The silver paste with 40-50 nm Ag:250-300 nm Ag in a 10:90 wt% mixture gives the highest electrical conductance. The metal mesh TCE film obtained with this silver paste in an optimized process exhibits a light transmittance of 90.4% and haze at 1.2%, which is suitable for TSP application.

Effects of Forwarders on TCP Performance in Network Coding for Wireless Mesh Networks (무선 메쉬 네트워크의 네트워크 코딩에서 패킷 전달자들이 TCP 성능에 미치는 영향)

  • Lim, Chan-Sook;Ahn, Hong-Young
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.10 no.6
    • /
    • pp.39-45
    • /
    • 2010
  • Most traffic in the real internet is TCP traffic. Therefore newly proposed network coding schemes must consider their effects on TCP performance. However, in most studies on network coding, performance evaluation has been conducted using other types of traffic than TCP traffic because network coding has effects on the pattern of packet transmission, which again can impact TCP performance. In most packet transmission schemes based on network coding for wireless mesh networks, it is determined which node, among the ones that received a broadcasted packet, should encode and forward it. In this paper, we examine how the forwarder nodes impact TCP performance.

Effects of Bearing Characteristic on the Gear Load Distribution in the Slewing Reducer for Excavator (굴삭기용 선회감속기의 베어링 특성이 기어 하중 분포에 미치는 영향 분석)

  • Kim, Jeong-Gil;Park, Young-Jun;Lee, Geun-Ho;Kim, Jae-Hoon
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.13 no.5
    • /
    • pp.8-14
    • /
    • 2014
  • A slewing reducer consists of two planetary gearsets which require a good load distribution over the gear tooth flank for enhanced durability. This work investigates how the bearing characteristics influence the load distribution over the gear tooth flank. A complete system model is developed to analyze a slewing reducer, including the non-linear mesh stiffness of the gears and the non-linear stiffness of bearings. The results indicate that the type, arrangement and preload of the output shaft bearings greatly influence the gear mesh misalignment, contact pattern, face load factor, gear safety factor and lifetimes of the parts.

Thermoelastic dynamic analysis of wavy carbon nanotube reinforced cylinders under thermal loads

  • Moradi-Dastjerdi, Rasool;Payganeh, Gholamhassan
    • Steel and Composite Structures
    • /
    • v.25 no.3
    • /
    • pp.315-326
    • /
    • 2017
  • In this work, thermoelastic dynamic behavior of functionally graded carbon nanotube reinforced composite (FG-CNTRC) cylinders subjected to mechanical pressure loads, uniform temperature environment or thermal gradient loads is investigated by a mesh-free method. The material properties and thermal stress wave propagation of the nanocomposite cylinders are derived after solving of the transient thermal equation and obtaining of the time history of temperature field of the cylinders. The nanocomposite cylinders are made of a polymer matrix and wavy single-walled carbon nanotubes (SWCNTs). The volume fraction of carbon nanotubes (CNTs) are assumed variable along the radial direction of the axisymmetric cylinder. Also, material properties of the polymer and CNT are assumed temperature-dependent and mechanical properties of the nanocomposite are estimated by a micro mechanical model in volume fraction form. In the mesh-free analysis, moving least squares shape functions are used to approximate temperature and displacement fields in the weak form of motion equation and transient thermal equation, respectively. Also, transformation method is used to impose their essential boundary conditions. Effects of waviness, volume fraction and distribution pattern of CNT, temperature of environment and direction of thermal gradient loads are investigated on the thermoelastic dynamic behavior of FG-CNTRC cylinders.

Vortex-Induced Vibration of Simple Slender Structure Using Cartesian Mesh (직교격자를 이용한 단순 세장 구조물의 와유기 진동 해석)

  • Han, Myung-Ryoon;Ahn, Hyung-Teak
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.48 no.3
    • /
    • pp.260-266
    • /
    • 2011
  • For long slender offshore structures, such as cables and pipe lines, their interaction with surrounding fluid flow becomes an important issue for global design of ocean systems. We employ a long circular cylinder as a representative case of slender offshore structure. A flexibly mounted cylinder in cross-flow generates complex vortex shedding and results in oscillation of the structure. In this paper, flow behind a circular cylinder at Re=100 is simulated. The vortex shedding pattern and flow induced motion are examined in the cross flow configuration as well as with various yaw-angled configurations. The "Lock-in" phenomenon is also observed when reduced velocity is approximately 4.0. The MAC Grid system, which is the typical grid system for Cartesian mesh and pressure correction methods, are used for solving the incompressible Navier-Stokes equations. Predictor/Corrector method is applied for obtaining a non-linear response of structure at the flexibly mounted. The existance and motion of the body is represented by the immersed boundary technique.

Reconstruction of Triceps Tendon Avulsion Using Mesh Graft and Krackow Suture in a Border Collie

  • Hyeon-Jong Choi;Jong-Hoon Kim;Eunchae Yoon;Tae-Sung Hwang;Hee-Chun Lee;Dongbin Lee;Jae-Hoon Lee
    • Journal of Veterinary Clinics
    • /
    • v.39 no.6
    • /
    • pp.378-383
    • /
    • 2022
  • A 3-year-old, 24-kg intact female Border Collie was referred for a toe-touch weight-bearing stance, intermittent weight-bearing lameness, and moderate pain reaction of the right forelimb on physical examination and right humerus olecranon avulsion fracture on diagnostic imaging examination. Surgical repair was performed using tension band wiring to re-attach the triceps tendon and distal olecranon. Migration of the distal olecranon fragment was observed due to comminuted fracture of the fragment 5-days after surgery, and revision surgery was performed. The tension-relieving sutures were passed through the pre-drilled hole in the olecranon, and the polyester mesh was augmented to the suture region, covering the triceps tendon and olecranon drilling hole using the Krackow suture pattern. The elbow joint was immobilized using a type IA transarticular external fixator, which was removed 8 weeks after surgery. Fourteen weeks after surgery, no lameness was observed on gait evaluation. At follow-up after 7 months, the distal olecranon fragment had stabilized, and no lameness was observed.

A Study on Men's Classic Shirts Patterns -Focusing on the Textbook of Clothing Construction-

  • Cha, Su-Joung
    • Journal of the Korea Society of Computer and Information
    • /
    • v.26 no.4
    • /
    • pp.119-131
    • /
    • 2021
  • In this study, I compared the pattern design method of classic shirts focused on the men's clothing consturction textbook. It was intended to select a shirt pattern drawing method suitable for men in their 20s by conducing a appearance evaluation with a 3D simulation program. Pattern drawing method, sizes, appearance evaluation, garment pressure. were evaluated, and SPSS 26.0 program was used for analysis. According to the Pattern drawing method, there were differences in application sizes, and there were many parts where designated sizes were applied. The shirt pattern is mostly the same for the front chest and back chest, front waist and back waist. However, if there is a front and back difference of the chest and the waist circumference, the fit was considered better. B pattern was evaluated as the best in appearance evaluation, color distribution, and mesh condition through 3D simulation, and B pattern was analyzed as the most suitable method for men in their 20s. Since this study applied the average sizes of the 7th Korean Human Body Dimension Survey report in 20s, it is thought that caution should be paid to apply them to all 20s. In the future, it is also thought that research on the actual fit and patterns of various body types and materials in their 20s should be carried out.

Transient Dynamic Analysis of a Patterned Tire Rolling over a Cleat with an Explicit Finite Element Program (외연적 유한요소법을 이용한 패턴 타이어에 대한 돌기물 통과시의 동적 특성 해석)

  • 김기운;정현성;범현규
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.11 no.6
    • /
    • pp.164-170
    • /
    • 2003
  • The finite element analysis of tires has been conventionally performed by either neglecting tread pattern or modeling only circumferential grooves. Besides, the tire analysis has been mainly limited to static or steady state rolling analysis. In this paper, a transient dynamic analysis of a patterned tire rolling over a cleat with an explicit finite element program is presented. The patterned tire with detailed tread blocks is modeled by a systematic mesh generation procedure, in which tire body and tread pattern meshes are separately generated in the beginning and then both meshes are combined by the tie constraint method. The cleat impact analysis is conducted by using both the patterned tire and the smooth tire models to predict the cleat enveloping characteristics. It is seen that the analysis results of the patterned tire model are in a good agreement with the experimental results.

Finite Element Anlaysis of Nanoindentation Process and its Experimental Verification (나노 인덴테이션 공정의 유한요소해석 및 실험적 검증)

  • 이정우;윤성원;강충길
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2003.05a
    • /
    • pp.116-119
    • /
    • 2003
  • In this study, to achieve the optimal conditions for mechanical hyper-fine pattern fabrication process, deformation behavior of the materials during indentation was studied with numerical method by ABAQUS S/W. Brittle materials (Si, Pyrex glass) were used as specimens, and forming conditions to reduce the elastic restoration and pile-up was proposed. The indenter was modeled a rigid surface. Minimum mesh sizes of specimens are 1-10nm Comparison between the experimental data and numerical result demonstrated that the finite element approach is capable of reproducing the loading-unloading behavior of a nanoindentation test. The result of the investigation will be applied to the fabrication of the hyper-fine pattern.

  • PDF

Hydrodynamic analysis of the surface-piercing propeller in unsteady open water condition using boundary element method

  • Yari, Ehsan;Ghassemi, Hassan
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.8 no.1
    • /
    • pp.22-37
    • /
    • 2016
  • This article investigates numerical modeling of surface piercing propeller (SPP) in unsteady open water condition using boundary element method. The home code based on BEM has been developed for the prediction of propeller performance, unsteady ventilation pattern and cross flow effect on partially submerged propellers. To achieve accurate results and correct behavior extraction of the ventilation zone, finely mesh has generated around the propeller and especially in the situation intersection of propeller with the free surface. Hydrodynamic coefficients and ventilation pattern on key blade of SPP are calculated in the different advance coefficients. The values obtained from this numerical simulation are plotted and the results are compared with experiments data and ventilation observations. The predicted ventilated open water performances of the SPP as well as ventilation pattern are in good agreement with experimental data. Finally, the results of the BEM code/experiment comparisons are discussed.