• 제목/요약/키워드: Mesh Generator

검색결과 74건 처리시간 0.025초

다유체 모델을 이용한 노즐 내부 유동에 대한 수치적 연구 (A Numerical Analysis of Internal Nozzle Flows Through the Multi-Fluid Model)

  • 류봉우;이창식
    • 한국분무공학회지
    • /
    • 제16권4호
    • /
    • pp.186-194
    • /
    • 2011
  • This study performed the numerical analysis of the internal nozzle flows including cavitation phenomena by using the automated body-fitted grid generator and the multi-fluid model. The effect of grid refinement and the validation of multifluid model were investigated using four computational meshes under two test conditions. The mesh #3 was chosen as the optimum which can reduce the computational time and have good prediction ability to identify the cavitation region simultaneously. In addition, the computed results using multi-fluid model were compared with the reference experimental observations and numerical simulation results using homogeneous equilibrium model. From the distribution of volume fraction and velocity field, the multi-fluid model predicted the internal nozzle flows well when the liquid quality parameters were selected as $1.0{\times}10^{12}$ for initial number density and 25 ${\mu}m$ for bubble diameter.

Memetic Algorithms을 적용한 영구자석 풍력발전기 최적설계 (Optimal Design of PM Wind Generator using Memetic Algorithm)

  • 박지성;안영준;김종욱;이철균;정상용
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2009년도 춘계학술대회 논문집 에너지변화시스템부문
    • /
    • pp.6-8
    • /
    • 2009
  • This paper presents the novel implementation of memetic algorithm with GA (Genetic Algorithm) and MADS (Mesh Adaptive Direct Search), which is applied for optimal design methodology of electric machine. This hybrid algorithm has been developed for obtaining the global optimum rapidly, which is effective for optimal design of electric machine with many local optima and much longer computation time. In particular, the proposed memetic algorithm has been forwarded to optimal design of direct-driven PM wind generator for maximizing the Annual Energy Production (AEP), of which design objective should be obtained by FEA (Finite Element Analysis). After all, it is shown that GA combined with MADS has contributed to reducing the computation time effectively for optimal design of PM wind generator when compared with purposely developed GA implemented with the parallel computing method.

  • PDF

A Form-finding Technique for Three-dimensional Spatial Structures

  • Lee, Sang Jin
    • Architectural research
    • /
    • 제15권4호
    • /
    • pp.207-214
    • /
    • 2013
  • A form-finding technique is proposed for three-dimensional spatial structures. Two-step discrete finite element (FE) mesh generator based on computer aided geometric design (CAGD) is introduced and used to control the shape of three-dimensional spatial structures. Mathematical programming technique is adopted to search new forms (or shapes) of spatial structures. For this purpose, the strain energy is introduced as the objective function to be minimized and the initial volume (or the initial weight) is considered as constraint function. Numerical examples are carried out to test the capability of the proposed form-finding techniques and provided as benchmark tests.

GIS 및 격자망 자동발생 프로그램을 이용한 해수유동 유한요소 모형의 전처리 시스템 (Preprocessing System for the Finite Element Tidal Simulation Model Using GIS and Automatic Mesh Generator)

  • 권순국;고덕구
    • 한국관개배수논문집
    • /
    • 제2권2호
    • /
    • pp.10-19
    • /
    • 1995
  • In spite of their high availability in the field of water resources, finite element models generally require large amount of input data in which the preparation of them consists of complicated procedures and time consuming works. In addition, in case of a

  • PDF

산업용 교반기 내부 정상/비정상 유동특성해석 (Steady/unsteady Flow Analysis for Industrial Mixer)

  • 장재원;허남건
    • 유체기계공업학회:학술대회논문집
    • /
    • 유체기계공업학회 2001년도 유체기계 연구개발 발표회 논문집
    • /
    • pp.460-465
    • /
    • 2001
  • In the present study, steady and unsteady flow characteristics inside an industrial mixer with flat turbine type impeller are studied. For the flow analysis, STAR-CD is used with an automatic mesh generator developed in the present study. flow results are compared to the an available experimental data to show validity or the present simulation.

  • PDF

Numerical Simulation System for Mould Designer

  • Shimazaki, Takeshi;Mori, Mineo;Naraki, Takeshi;Wakatsuki, Hiroshi
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 한국정보디스플레이학회 2002년도 International Meeting on Information Display
    • /
    • pp.388-391
    • /
    • 2002
  • We report our CAB system on thermal analysis for mould designer who is not expert of numerical simulation. Our mathematical model of thermal analysis is axi-symmetrically. It has an automatic mesh-generator that is based on Delaunay method, by using CAD data. And boundary conditions are also fitted automatically.

  • PDF

SMART 유동혼합헤더집합체 열혼합 특성 해석 (CFD ANALYSIS FOR THERMAL MIXING CHARACTERISTICS OF A FLOW MIXING HEADER ASSEMBLY OF SMART)

  • 김영인;배영민;정영종;김긍구
    • 한국전산유체공학회지
    • /
    • 제20권1호
    • /
    • pp.84-91
    • /
    • 2015
  • SMART adopts, very unique facility, an FMHA to enhance the thermal and flow mixing capability in abnormal conditions of some steam generators or reactor coolant pumps. The FMHA is important for enhancing thermal mixing of the core inlet flow during a transient and even during accidents, and thus it is essential that the thermal mixing characteristics of flow of the FMHA be understood. Investigations for the mixing characteristics of the FMHA had been performed by using experimental and CFD methods in KAERI. In this study, the temperature distribution at the core inlet region is investigated for several abnormal conditions of steam generators using the commercial code, FLUENT 12. Simulations are carried out with two kinds of FMHA shapes, different mesh resolutions, turbulence models, and steam generator conditions. The CFD results show that the temperature deviation at the core inlet reduces greatly for all turbulence models and steam generator conditions tested here, and the effect of mesh refinement on the temperature distribution at the core inlet is negligible. Even though the uniformity of FMHA outlet hole flow increases the thermal mixing, the temperature deviation at the core inlet is within an acceptable range. We numerically confirmed that the FMHA applied in SMART has an excellent mixing capability and all simulation cases tested here satisfies the design requirement for FMHA thermal mixing capability.

주파수 응답해석을 통한 풍력발전기용 기어박스의 동특성해석 (Vibration Analysis of wind turbine gearbox with frequency response analysis)

  • 박현용;박정훈
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2010년도 추계학술대회 초록집
    • /
    • pp.178.2-178.2
    • /
    • 2010
  • The wind turbine gearbox is important rotating part to transmit torque from turbine blade to generator. Generally, gear shaft which rotates causes vibration by influence of stiffness and mass with gear shaft. Root cause of this vibration source is well known to gear transmission error that is decided from gear tooth property. Transmission error excites a gear, and makes excitation force that is vibrated shaft. This vibration of shaft is transmitted to gearbox housing through gearbox bearing. If the resonance about which the natural frequency of the gearbox accords with shaft exciting frequency occurs, a wind turbine can lead to failure. The gearbox for wind turbine should be considered influence of vibration as well as the fatigue life and its performance by such reason. The cause to vibration should be closely examined to reduce influence of such vibration. In this paper, the cause of the vibration which occurs by a gearbox is closely examined and the method which can reduce the vibration which occurred is shown. It is compared with vibration test outcome of a 3MW gearbox for verification of the method shown by this paper.

  • PDF

과도액정기법을 이용한 열전달 측정 및 수치해석 (Heat Transfer Measurement Using a Transient Liquid Crystal Technique and Numerical Anlysis)

  • 홍철현;이기백;양장식
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제29권1호
    • /
    • pp.68-77
    • /
    • 2005
  • A transient liquid crystal technique has become one of the most effective ways in measuring the local heat transfer coefficients on the entire surface. The key Point of this technique is to convert the inlet flow temperature into an exponential temperature profile using a mesh heater. In order to verify the validity of this technique. the heat transfer characteristics on the wall surface by a pair of longitudinal vortices is investigated experimently and numerically. A standard ${\kappa}-{\varepsilon}$ is used for the numerical analysis of turbulent flow field. It is found from experiment and numerical analysis that two peak values exist over the whole domain. as the longitudinal vortices move to the farther downstream. these peak values decrease and the dimensionless averaged Nusselt number with the lapse of time is maintained nearly at constant values. The experiment results obtained from the present experiment in terms of the transient liquid crystal technique are in good agreement with the numerical results. Therefore, the transient liquid crystal technique developed for the measurement of heat transfer coefficient is proved to be a valid method.

Performance analysis of Savonius Rotor for Wave Energy Conversion using CFD

  • ;최영도;김규한;이영호
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2009년도 추계학술대회 논문집
    • /
    • pp.600-605
    • /
    • 2009
  • A general purpose viscous flow solver Ansys CFX is used to study a Savonius type wave energy converter in a 3D numerical viscous wave tank. This paper presents the results of a computational fluid dynamics (CFD) analysis of the effect of blade configuration on the performance of 3 bladed Savonius rotors for wave energy extraction. A piston-type wave generator was incorporated in the computational domain to generate the desired incident waves. A complete OWC system with a 3-bladed Savonius rotor was modeled in a three dimensional numerical wave tank and the hydrodynamic conversion efficiency was estimated. The flow over the rotors is assumed to be two-dimensional (2D), viscous, turbulent and unsteady. The CFX code is used with a solver of the coupled conservation equations of mass, momentum and energy, with an implicit time scheme and with the adoption of the hexahedral mesh and the moving mesh techniques in areas of moving surfaces. Turbulence is modeled with the k.e model. Simulations were carried out simultaneously for the rotor angle and the helical twist. The results indicate that the developed models are suitable to analyze the water flows both in the chamber and in the turbine. For the turbine, the numerical results of torque were compared for all the cases.

  • PDF