• 제목/요약/키워드: Mesh Analysis

검색결과 1,736건 처리시간 0.03초

3차원 물체 표면상의 비정렬 사변형 격자의 자동 생성 기법 (AUTOMATED QUADRILATERAL SURFACE MESH GENERATION ON THREE-DIMENSIONAL SURFACES)

  • 원정희;김병수
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2006년도 추계 학술대회논문집
    • /
    • pp.70-73
    • /
    • 2006
  • Mesh generation for the region of interest is prerequisite for numerical analysis of governing partial differential equations describing phenomena with proper physic. Mesh generation is, however, usually considered as a major obstacle for a routine application of numerical approaches in Engineering applications. Therefore automatic mesh generation is highly pursued. In this paper automated quadrilateral surface mesh generation is proposed. According to the present method, Cartesian cells of proper resolution for a region bounding the whole region of interest are first generated and the interior cells are identified. Then projecting their surface meshes onto the boundary surfaces gives surface mesh consisting of quadrilateral cells. This method has been implemented as an application program, and example cases are given.

  • PDF

A Study on the Determination of Closing Level for Finite Element Analysis of Fatigue Crack Closure

  • Choi, Hyeon-Chang
    • Journal of Mechanical Science and Technology
    • /
    • 제14권4호
    • /
    • pp.401-407
    • /
    • 2000
  • An elastic-plastic finite element analysis is performed to investigate detailed closure behavior of fatigue cracks and the numerical results are compared with experimental results. The finite element analysis performed under plane stress using 4-node isoparametric elements can predict fatigue crack closure behavior. The mesh of constant element size along crack surface can not predict the opening level of fatigue crack. The crack opening level for the constant mesh size increases linearly from initial crack growth. The crack opening level for variable mesh size, is almost flat after crack tip has passed the monotonic plastic zone. The prediction of crack opening level using the variable mesh size proportioning the reversed plastic zone size with the opening stress intensity factors presents a good agreement with the experimental data regardless of stress ratios.

  • PDF

A new ALE formulation for sloshing analysis

  • Aquelet, N.;Souli, M.;Gabrys, J.;Olovson, L.
    • Structural Engineering and Mechanics
    • /
    • 제16권4호
    • /
    • pp.423-440
    • /
    • 2003
  • Arbitrary Lagrangian Eulerian finite element methods gain interest for the capability to control mesh geometry independently from material geometry, the ALE methods are used to create a new undistorted mesh for the fluid domain. In this paper we use the ALE technique to solve fuel slosh problem. Fuel slosh is an important design consideration not only for the fuel tank, but also for the structure supporting the fuel tank. "Fuel slosh" can be generated by many ways: abrupt changes in acceleration (braking), as well as abrupt changes in direction (highway exit-ramp). Repetitive motion can also be involved if a "sloshing resonance" is generated. These sloshing events can in turn affect the overall performance of the parent structure. A finite element analysis method has been developed to analyze this complex event. A new ALE formulation for the fluid mesh has been developed to keep the fluid mesh integrity during the motion of the tank. This paper explains the analysis capabilities on a technical level. Following the explanation, the analysis capabilities are validated against theoretical using potential flow for calculating fuel slosh frequency.

Static analysis of FGM cylinders by a mesh-free method

  • Foroutan, M.;Moradi-Dastjerdi, R.;Sotoodeh-Bahreini, R.
    • Steel and Composite Structures
    • /
    • 제12권1호
    • /
    • pp.1-11
    • /
    • 2012
  • In this paper static analysis of FGM cylinders subjected to internal and external pressure was carried out by a mesh-free method. In this analysis MLS shape functions are used for approximation of displacement field in the weak form of equilibrium equation and essential boundary conditions are imposed by transformation method. Mechanical properties of cylinders were assumed to be variable in the radial direction. Two types of cylinders were analyzed in this work. At first cylinders with infinite length were considered and results obtained for these cylinders were compared with analytical solutions and a very good agreement was seen between them. Then the proposed mesh-free method was used for analysis of cylinders with finite length and two different types of boundary conditions. Results obtained from these analyses were compared with results of finite element analyses and a very good agreement was seen between them.

An Automated Adaptive Finite Element Mesh Generation for Dynamics

  • Yoon, Chongyul
    • 한국지진공학회논문집
    • /
    • 제23권1호
    • /
    • pp.83-88
    • /
    • 2019
  • Structural analysis remains as an essential part of any integrated civil engineering system in today's rapidly changing computing environment. Even with enormous advancements in capabilities of computers and mobile tools, enhancing computational efficiency of algorithms is necessary to meet the changing demands for quick real time response systems. The finite element method is still the most widely used method of computational structural analysis; a robust, reliable and automated finite element structural analysis module is essential in a modern integrated structural engineering system. To be a part of an automated finite element structural analysis, an efficient adaptive mesh generation scheme based on R-H refinement for the mesh and error estimates from representative strain values at Gauss points is described. A coefficient that depends on the shape of element is used to correct overly distorted elements. Two simple case studies show the validity and computational efficiency. The scheme is appropriate for nonlinear and dynamic problems in earthquake engineering which generally require a huge number of iterative computations.

방진마운트 개발을 위한 와이어 메쉬 탄성계수 추출 (Elastic Modulus Extraction of Wire Mesh for Vibration Mount Development)

  • 김태연;신윤호;문석준;정병창;이태진
    • 한국소음진동공학회논문집
    • /
    • 제26권7호
    • /
    • pp.806-813
    • /
    • 2016
  • To alleviate the vibration problem or to satisfy the required criteria for manifesting the guaranteed performance of precise equipment, various vibration isolation materials or apparatus, such as viscoelastic material, air and coil spring, have been developed and applied. Among them, a wire mesh material is regarded as one of the good candidate for reducing the vibration in terms of moderate material price, easy shape machining and long life cycle without the property deterioration induced by the aging or environmental effects. In this paper, prior to wire mesh isolator design, the static and dynamic elastic modulus of wire mesh materials are extracted from the experiment by the simple shaped cylindrical specimens and their characteristics for applying to vibration isolator design are examined. The simple shaped specimens were made as considering the design parameters of a wire mesh mount; i.e. the density, wire diameter and wire mesh slope, and the sensitivity analysis were also performed from a view point of the extracted elastic modulus.

버블패킹방법을 이용한 2차원 자동격자 생성 및 재구성 알고리듬 개발(I) -선형 해석- (Development of Algorithm for 2-D Automatic Mesh Generation and Remeshing Technique Using Bubble Packing Method (I) -Linear Analysis-)

  • 정순완;김승조
    • 대한기계학회논문집A
    • /
    • 제25권6호
    • /
    • pp.1004-1014
    • /
    • 2001
  • The fully automatic algorithm from initial finite element mesh generation to remeshing in two dimensional geometry is introduced using bubble packing method (BPM) for finite element analysis. BPM determines the node placement by force-balancing configuration of bubbles and the triangular meshes are made by Delaunay triangulation with advancing front concept. In BPM, we suggest two node-search algorithms and the adaptive/recursive bubble controls to search the optimal nodal position. To use the automatically generated mesh information in FEA, the new enhanced bandwidth minimization scheme with high efficiency in CPU time is developed. In the remeshing stage, the mesh refinement is incorporated by the control of bubble size using two parameters. And Superconvergent Patch Recovery (SPR) technique is used for error estimation. To verify the capability of this algorithm, we consider two elasticity problems, one is the bending problem of short cantilever beam and the tension problem of infinite plate with hole. The numerical results indicate that the algorithm by BPM is able to refine the mesh based on a posteriori error and control the mesh size easily by two parameters.

자유 곡면으로 구성되는 3차원 구조물에 대한 자동 요소 분할 (Automatic Mesh Generation for Three-Dimensional Structures Consisting of Free-Form Surfaces)

  • 이준성;;박면웅
    • 한국CDE학회논문집
    • /
    • 제1권1호
    • /
    • pp.65-75
    • /
    • 1996
  • This paper describes an automatic finite element(FE) mesh generation for three-dimensional structures consisting of free-form surfaces. This mesh generation process consists of three subprocesses: (a) definition of geometric model, i.e. analysis model, (b) generation of nodes, and (c) generation of elements. One of commercial solid modelers is employed for three-dimensional solid and shell structures. Node is generated if its distance from existing node points is similar to the node spacing function at the point. The node spacing function is well controlled by the fuzzy knowledge processing. The Delaunay method is introduced as a basic tool for element generation. Automatic generation of FE meshes for three-dimensional solid and shell structures holds great benefits for analyses. Practical performances of the present system are demonstrated through several mesh generations for three-dimensional complex geometry.

  • PDF

Delaunay 삼각화기법을 이용한 유한요소망의 자동생성과 격자재구성에의 응용 (Automatic Mesh Generation by Delaunay Triangulation and Its Application to Remeshing)

  • 정현석;김용환
    • 대한기계학회논문집A
    • /
    • 제20권2호
    • /
    • pp.553-563
    • /
    • 1996
  • An algorithm for automatic mesh generation of two-dimensional arbitrary planar domain is proposed by using Delaunay triangulation algorithm. An efficient algorithm is proposed for the construction of Delaunay triangulation algorithm over convex planar domain. From the definition of boundary, boundary nodes are first defined and then interior nodes are generated ensuring the Delaunay property. These interior nodes and the boundary nodes are then linked up together to produce a valid triangular mesh for any finite element analysis. Through the various example, it is found that high-quality triangular element meshes are obtained by Delaunay algorithm, showing the robustness of the current method. The proposed mesh generation scheme has been extended to automatic remeshing, which is applicable to FE analysis including large deformation and large distortion of elements.

등고선 데이터를 이용한 산악지형 유동해석 격자생성 프로그램 개발 및 그 응용 (The development of a mesh generation program using contour line data)

  • 진상문;원찬식;허남건
    • 한국전산유체공학회지
    • /
    • 제9권4호
    • /
    • pp.7-12
    • /
    • 2004
  • In the present study a semi-automatic mesh generation program has been developed by using DXF file containing contour line data. The program consists of DXF file reader and mapping algorithm. Pre-generated 2-D planar mesh points are to be mapped one by one onto triangular surface whose three vertices are three nearest contour points surrounding the mapping point. The present program has been successfully tested for mesh generations for the road tunnel ventilation analysis and analysis of lava movement in mountain area.