• 제목/요약/키워드: Mesenchymal-epithelial transition factor

검색결과 61건 처리시간 0.03초

Endoplasmic Reticulum Stress Induces CAP2 Expression Promoting Epithelial-Mesenchymal Transition in Liver Cancer Cells

  • Yoon, Sarah;Shin, Boram;Woo, Hyun Goo
    • Molecules and Cells
    • /
    • 제44권8호
    • /
    • pp.569-579
    • /
    • 2021
  • Cyclase-associated protein 2 (CAP2) has been addressed as a candidate biomarker in various cancer types. Previously, we have shown that CAP2 is expressed during multi-step hepatocarcinogenesis; however, its underlying mechanisms in liver cancer cells are not fully elucidated yet. Here, we demonstrated that endoplasmic reticulum (ER) stress induced CAP2 expression, and which promoted migration and invasion of liver cancer cells. We also found that the ER stress-induced CAP2 expression is mediated through activation of protein kinase C epsilon (PKCε) and the promotor binding of activating transcription factor 2 (ATF2). In addition, we further demonstrated that CAP2 expression promoted epithelial-mesenchymal transition (EMT) through activation of Rac1 and ERK. In conclusion, we suggest that ER stress induces CAP2 expression promoting EMT in liver cancer cells. Our results shed light on the novel functions of CAP2 in the metastatic process of liver cancer cells.

Wheatgrass extract inhibits hypoxia-inducible factor-1-mediated epithelial-mesenchymal transition in A549 cells

  • Do, Nam Yong;Shin, Hyun-Jae;Lee, Ji-Eun
    • Nutrition Research and Practice
    • /
    • 제11권2호
    • /
    • pp.83-89
    • /
    • 2017
  • BACKGROUND/OBJECTIVES: Epithelial-mesenchymal transition (EMT) is involved in not only cancer development and metastasis but also non-cancerous conditions. Hypoxia is one of the proposed critical factors contributing to formation of chronic rhinosinusitis or nasal polyposis. Wheatgrass (Triticum aestivum) has antioxidant, anti-aging, and anti-inflammatory effects. In this study, we analyzed whether wheatgrass has an inhibitory effect on the EMT process in airway epithelial cells. MATERIALS/METHODS: A549 human lung adenocarcinoma cells were incubated in hypoxic conditions ($CO_2$ 5%/$O_2$ 1%) for 24 h in the presence of different concentrations of wheatgrass extract (50, 75, 100, and $150{\mu}g/mL$) and changes in expression of epithelial or mesenchymal markers were evaluated by immunoblotting and immunofluorescence. Accordingly, associated EMT-related transcriptional factors, Snail and Smad, were also evaluated. RESULTS: Hypoxia increased expression of N-cadherin and reduced expression of E-cadherin. Mechanistically, E-cadherin levels were recovered during hypoxia by silencing hypoxia inducible factor (HIF)-$1{\alpha}$ or administering wheatgrass extract. Wheatgrass inhibited the hypoxia-mediated EMT by reducing the expression of phosphorylated Smad3 (pSmad3) and Snail. It suppressed the hypoxia-mediated EMT processes of airway epithelial cells via HIF-$1{\alpha}$ and the pSmad3 signaling pathway. CONCLUSION: These results suggest that wheatgrass has potential as a therapeutic or supplementary agent for HIF-1-related diseases.

Epithelial-mesenchymal Transition is Associated with Acquired Resistance to 5-Fluorocuracil in HT-29 Colon Cancer Cells

  • Kim, A-Young;Kwak, Jae-Hwan;Je, Nam Kyung;Lee, Yun-hee;Jung, Young-Suk
    • Toxicological Research
    • /
    • 제31권2호
    • /
    • pp.151-156
    • /
    • 2015
  • 5-Fluorouracil (5-FU) is commonly used for the therapy of colon cancer; however, acquired resistance to 5-FU is a critical barrier to successful treatment and the primary cause of chemotherapy failure. Epithelial-mesenchymal transition (EMT) is a process whereby cells undergo alterations in morphology and molecular characteristics promoting tumor progression and metastasis. Accumulating evidence shows that transition from epithelial to mesenchymal phenotype in cancer cells is associated with their resistance to chemotherapy. However, it is still poorly understood whether EMT is involved in acquired resistance to 5-FU. In this study, we developed an in vitro cell model, 5-FU-resistant HT-29 colon cancer cells, and characterized the differences in cellular morphology and molecular alterations between parental and resistant cells. In accord with mesenchymal-like morphology of 5-FU-resistant HT-29 cells, the expression of the mesenchymal marker fibronectin was significantly increased in these cells in comparision with that in the parental cells. Of interest, we also found a marked increase in the expression of EMT-inducing transcription factors Twist, Zeb1, and Zeb2. Finally, 5-FU-resistant cells showed enhanced migration in comparison with parental HT-29. Taken together, these results indicate that EMT could be associated with 5-FU resistance acquired by HT-29 cells. A specific role of each transcription factor found in this study will require further investigation.

Epithelial-mesenchymal Transition and Cell Invasion

  • Son, Hwa-Jin;Moon, Aree
    • Toxicological Research
    • /
    • 제26권4호
    • /
    • pp.245-252
    • /
    • 2010
  • Epithelial-mesenchymal transition (EMT) is a complex process in which epithelial cells acquire the characteristics of invasive mesenchymal cells. EMT has been implicated in cancer progression and metastasis as well as the formation of many tissues and organs during development. Epithelial cells undergoing EMT lose cell-cell adhesion structures and polarity, and rearrange their cytoskeletons. Several oncogenic pathways such as transforming growth factor (TGF)-$\beta$, Wnt, and Notch signaling pathways, have been shown to induce EMT. These pathways have activated transcription factors including Snail, Slug, and the ZEB family which work as transcriptional repressors of E-cadherin, thereby making epithelial cells motile and resistant to apoptosis. Mounting evidence shows that EMT is associated with cell invasion and tumor progression. In this review, we summarize the characteristic features of EMT, pathways leading to EMT, and the role of EMT in cell invasion. Three topics are addressed in this review: (1) Definition of EMT, (2) Signaling pathways leading to EMT, (3) Role of EMT in cell invasion. Understanding the role of EMT in cell invasion will provide valuable information for establishing strategies to develop anti-metastatic therapeutics which modulate malignant cellular processes mediated by EMT.

Epithelial to mesenchymal transition (EMT) of feto-maternal reproductive tissues generates inflammation: a detrimental factor for preterm birth

  • Menon, Ramkumar
    • BMB Reports
    • /
    • 제55권8호
    • /
    • pp.370-379
    • /
    • 2022
  • Human pregnancy is a delicate and complex process where multiorgan interactions between two independent systems, the mother, and her fetus, maintain pregnancy. Intercellular interactions that can define homeostasis at the various cellular level between the two systems allow uninterrupted fetal growth and development until delivery. Interactions are needed for tissue remodeling during pregnancy at both fetal and maternal tissue layers. One of the mechanisms that help tissue remodeling is via cellular transitions where epithelial cells undergo a cyclic transition from epithelial to mesenchymal (EMT) and back from mesenchymal to epithelial (MET). Two major pregnancy-associated tissue systems that use EMT, and MET are the fetal membrane (amniochorion) amnion epithelial layer and cervical epithelial cells and will be reviewed here. EMT is often associated with localized inflammation, and it is a well-balanced process to facilitate tissue remodeling. Cyclic transition processes are important because a terminal state or the static state of EMT can cause accumulation of proinflammatory mesenchymal cells in the matrix regions of these tissues and increase localized inflammation that can cause tissue damage. Interactions that determine homeostasis are often controlled by both endocrine and paracrine mediators. Pregnancy maintenance hormone progesterone and its receptors are critical for maintaining the balance between EMT and MET. Increased intrauterine oxidative stress at term can force a static (terminal) EMT and increase inflammation that are physiologic processes that destabilize homeostasis that maintain pregnancy to promote labor and delivery of the fetus. However, conditions that can produce an untimely increase in EMT and inflammation can be pathologic. These tissue damages are often associated with adverse pregnancy complications such as preterm prelabor rupture of the membranes (pPROM) and spontaneous preterm birth (PTB). Therefore, an understanding of the biomolecular processes that maintain cyclic EMT-MET is critical to reducing the risk of pPROM and PTB. Extracellular vesicles (exosomes of 40-160 nm) that can carry various cargo are involved in cellular transitions as paracrine mediators. Exosomes can carry a variety of biomolecules as cargo. Studies specifically using exosomes from cells undergone EMT can carry a pro-inflammatory cargo and in a paracrine fashion can modify the neighboring tissue environment to cause enhancement of uterine inflammation.

Early Growth Response Protein-1 Involves in Transforming Growth factor-β1 Induced Epithelial-Mesenchymal Transition and Inhibits Migration of Non-Small-Cell Lung Cancer Cells

  • Shan, Li-Na;Song, Yong-Gui;Su, Dan;Liu, Ya-Li;Shi, Xian-Bao;Lu, Si-Jing
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제16권9호
    • /
    • pp.4137-4142
    • /
    • 2015
  • The zinc finger transcription factor EGR 1 has a role in controlling synaptic plasticity, wound repair, female reproductive capacity, inflammation, growth control, apoptosis and tumor progression. Recent studies mainly focused on its role in growth control and apoptosis, however, little is known about its role in epithelial-mesenchymal transition (EMT). Here, we aim to explore whether EGR 1 is involved in TGF-${\beta}1$-induced EMT in non-smallcell lung cancer cells. Transforming growth factor (TGF)-${\beta}1$ was utilized to induce EMT in this study. Western blotting, RT-PCR, and transwell chambers were used to identify phenotype changes. Western blotting was also used to observe changes of the expression of EGR 1. The lentivirus-mediated EGR 1 vector was used to increase EGR 1 expression. We investigated the change of migration to evaluate the effect of EGR 1 on non-small-cell lung cancer cells migration by transwell chambers. After stimulating with TGF-${\beta}1$, almost all A549 cells and Luca 1 cells (Non-small-cell lung cancer primary cells) changed to mesenchymal phenotype and acquired more migration capabilities. These cells also had lower EGR 1 protein expression. Overexpression of EGR 1 gene with EGR 1 vector could decrease tumor cell migration capabilities significantly after adding TGF-${\beta}1$. These data s howed an important role of EGR 1 in the EMT of non-small-cell lung cancer cells, as well as migration.

Anti-metastatic Effect of Natural Product-motivated Synthetic PPAR-γ Ligands

  • Li, Dan-dan;Wang, Ying;Ju, Zhiran;Kim, Eun La;Hong, Jongki;Jung, Jee H.
    • Natural Product Sciences
    • /
    • 제28권2호
    • /
    • pp.80-88
    • /
    • 2022
  • Colorectal cancer is one of the most common cancers globally, ranking second for the number of cancer-related deaths. Metastasis has been reported as the main cause of death in patients with colorectal cancer. Peroxisome proliferator-activated receptor gamma (PPAR-γ) is a transcription factor that functions as a tumor suppressor by inhibiting cellular proliferation, migration, and invasion. In our previous efforts to generate natural product-motivated PPAR-γ ligands, the compounds 1 and 2 were obtained. These compounds activated PPAR-γ and inhibited the migration and invasion of HCT116 colorectal cancer cells, and they were also found to inhibit the epithelial-to-mesenchymal transition, which is a key process in cancer metastasis. Compounds 1 and 2 upregulated expression of the epithelial marker (E-cadherin), and downregulated expression of the mesenchymal marker (N-cadherin) and transcriptional factor (Snail). Therefore, the PPAR-γ agonists 1 and 2 could serve as a valuable model for the study on anti-metastatic leads for the treatment of colorectal cancer.

ACY-241, a histone deacetylase 6 inhibitor, suppresses the epithelial-mesenchymal transition in lung cancer cells by downregulating hypoxia-inducible factor-1 alpha

  • Seong-Jun Park;Naeun Lee;Chul-Ho Jeong
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제28권1호
    • /
    • pp.83-91
    • /
    • 2024
  • Hypoxia-inducible factor-1 alpha (HIF-1α) is a transcription factor activated under hypoxic conditions, and it plays a crucial role in cellular stress regulation. While HIF-1α activity is essential in normal tissues, its presence in the tumor microenvironment represents a significant risk factor as it can induce angiogenesis and confer resistance to anti-cancer drugs, thereby contributing to poor prognoses. Typically, HIF-1α undergoes rapid degradation in normoxic conditions via oxygen-dependent degradation mechanisms. However, certain cancer cells can express HIF-1α even under normoxia. In this study, we observed an inclination toward increased normoxic HIF-1α expression in cancer cell lines exhibiting increased HDAC6 expression, which prompted the hypothesis that HDAC6 may modulate HIF-1α stability in normoxic conditions. To prove this hypothesis, several cancer cells with relatively higher HIF-1α levels under normoxic conditions were treated with ACY-241, a selective HDAC6 inhibitor, and small interfering RNAs for HDAC6 knockdown. Our data revealed a significant reduction in HIF-1α expression upon HDAC6 inhibition. Moreover, the downregulation of HIF-1α under normoxic conditions decreased zinc finger E-box-binding homeobox 1 expression and increased E-cadherin levels in lung cancer H1975 cells, consequently suppressing cell invasion and migration. ACY-241 treatment also demonstrated an inhibitory effect on cell invasion and migration by reducing HIF-1α level. This study confirms that HDAC6 knockdown and ACY-241 treatment effectively decrease HIF-1α expression under normoxia, thereby suppressing the epithelial-mesenchymal transition. These findings highlight the potential of selective HDAC6 inhibition as an innovative therapeutic strategy for lung cancer.

Inhibition of Plasminogen Activator Inhibitor-1 Expression in Smoke-Exposed Alveolar Type II Epithelial Cells Attenuates Epithelial-Mesenchymal Transition

  • Song, Jeong-Sup;Kang, Chun-Mi
    • Tuberculosis and Respiratory Diseases
    • /
    • 제70권6호
    • /
    • pp.462-473
    • /
    • 2011
  • Background: Smoking is a risk factor for idiopathic pulmonary fibrosis (IPF), but the mechanism of the association remains obscure. There is evidence demonstrating that plasminogen activator inhibitor-1 (PAI-1) is involved in the progression of pulmonary fibrosis. This study was to determine whether the administration of small interfering RNA (siRNA) targeting PAI-1 or PAI-1 inhibitor to the cigarette smoking extract (CSE)-exposed rat alveolar type II epithelial cells (ATII cells) limits the epithelial-mesenchymal transition (EMT). Methods: ATII cells were isolated from lung of SD-rat using percoll gradient method and cultured with 5% CSE. The EMT was determined from the ATII cells by measuring the real-time RT PCR and western blotting after the PAI-1 siRNA transfection to the cells and after administration of tiplaxtinin, an inhibitor of PAI-1. The effect of PAI-1 inhibitor was also evaluated in the bleomycin-induced rats. Results: PAI-1 was overexpressed in the smoking exposed ATII cells and was directly associated with EMT. The EMT from the ATII cells was suppressed by PAI-1 siRNA transfection or administration of tiplaxtinin. Signaling pathways for EMT by smoking extract were through the phosphorylation of SMAD2 and ERK1/2, and finally Snail expression. Tiplaxtinin also suppressed the pulmonary fibrosis and PAI-1 expression in the bleomycin-induced rats. Conclusion: Our data shows that CSE induces rat ATII cells to undergo EMT by PAI-1 via SMAD2-ERK1/2-Snail activation. This suppression of EMT by PAI-1 siRNA transfection or PAI-1 inhibitor in primary type II alveolar epithelial cells might be involved in the attenuation of bleomycin-induced pulmonary fibrosis in rats.

Roles of Signaling Pathways in the Epithelial-Mesenchymal Transition in Cancer

  • Liu, Xia;Yun, Fen;Shi, Lin;Li, Zhe-Hai;Luo, Nian-Rong;Jia, Yong-Feng
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제16권15호
    • /
    • pp.6201-6206
    • /
    • 2015
  • The epithelial-mesenchymal transition (EMT) is a cellular process though which an epithelial phenotype can be converted into a phenotype of mesenchymal cells. Under physiological conditions EMT is important for embryogenesis, organ development, wound repair and tissue remodeling. However, EMT may also be activated under pathologic conditions, especially in carcinogenesis and metastatic progression. Major signaling pathways involved in EMT include transforming growth factor ${\beta}(TGF-{\beta})$, Wnt, Notch, Hedgehog and other signaling pathways. These pathways are related to several transcription factors, including Twist, Smads and zinc finger proteins snail and slug. These interact with each other to provide crosstalk between the relevant signaling pathways. This review lays emphasis on studying the relationship between EMT and signaling pathways in carcinogenesis and metastatic progression.