• 제목/요약/키워드: Mesenchymal stem-like cells

검색결과 98건 처리시간 0.023초

Stanniocalcin 2 enhances mesenchymal stem cell survival by suppressing oxidative stress

  • Kim, Pyung-Hwan;Na, Sang-Su;Lee, Bomnaerin;Kim, Joo-Hyun;Cho, Je-Yoel
    • BMB Reports
    • /
    • 제48권12호
    • /
    • pp.702-707
    • /
    • 2015
  • To overcome the disadvantages of stem cell-based cell therapy like low cell survival at the disease site, we used stanniocalcin 2 (STC2), a family of secreted glycoprotein hormones that function to inhibit apoptosis and oxidative damage and to induce proliferation. STC2 gene was transfected into two kinds of stem cells to prolong cell survival and protect the cells from the damage by oxidative stress. The stem cells expressing STC2 exhibited increased cell viability and improved cell survival as well as elevated expression of the pluripotency and self-renewal markers (Oct4 and Nanog) under sub-lethal oxidative conditions. Up-regulation of CDK2 and CDK4 and down-regulation of cell cycle inhibitors p16 and p21 were observed after the delivery of STC2. Furthermore, STC2 transduction activated pAKT and pERK 1/2 signal pathways. Taken together, the STC2 can be used to enhance cell survival and maintain long-term stemness in therapeutic use of stem cells.

Supplementation of retinoic acid alone in MSC culture medium induced germ cell-like cell differentiation

  • Kuldeep Kumar;Kinsuk Das;Ajay Kumar;Purnima Singh;Madhusoodan A. P.;Triveni Dutt;Sadhan Bag
    • 한국동물생명공학회지
    • /
    • 제38권2호
    • /
    • pp.54-61
    • /
    • 2023
  • Background: Germ cells undergo towards male or female pathways to produce spermatozoa or oocyte respectively which is essential for sexual reproduction. Mesenchymal stem cells (MSCs) have the potential of trans-differentiation to the multiple cell lineages. Methods: Herein, rat MSCs were isolated from bone marrow and characterized by their morphological features, expression of MSC surface markers, and in vitro differentiation capability. Results: Thereafter, we induced these cells only by retinoic acid supplementation in MSC medium and, could able to show that bone marrow derived MSCs are capable to trans-differentiate into male germ cell-like cells in vitro. We characterized these cells by morphological changes, the expressions of germ cell specific markers by immunophenotyping and molecular biology tools. Further, we quantified these differentiated cells. Conclusions: This study suggests that only Retinoic acid in culture medium could induce bone marrow MSCs to differentiate germ cell-like cells in vitro. This basic method of germ cell generation might be helpful in the prospective applications of this technology.

중간엽줄기세포의 노화에 따른 후생유전학적 변화 (Epigenomic Alteration in Replicative Senescent-mesenchymal Stem Cells)

  • 오윤서;조광원
    • 생명과학회지
    • /
    • 제25권6호
    • /
    • pp.724-731
    • /
    • 2015
  • 중간엽줄기세포는 성체줄기세포의 한 종류로, 자기재생산능력(self-renwal)과 다분화능(multipotency)을 가지고 있고, 다양한 자양인자(trophic factors)들을 분비한다. 뿐만 아니라, 중간엽줄기세포는 골수, 지방, 탯줄과 같은 조직에서 쉽게 얻을 수 있기 때문에 줄기세포치료에 좋은 도구로 이용되고 있다. 하지만, 줄기세포치료의 효율성을 높이기 위해 추출한 세포의 개체 수를 늘리는 과정에서 중간엽줄기세포는 점차적인 노화를 겪게 되고, 이는 줄기세포 자체의 기능적인 감소를 야기한다. 인체 내에서, 노화된 줄기세포는 조직 내의 항상성 유지에 부정적인 영향 을 미치게 되고, 이러한 상태가 지속되면 대표적인 노인성 질환인 퇴행성 질환의 원인이 된다. 최근 연구들에 의하면 중간엽줄기세포가 노화를 겪을 때, 노화 관련된 DNA 메틸화 패턴의 변화와 히스톤의 변형이 일어남을 확인하였다. 또한, 중간엽줄기세포의 노화에 있어서 DNA 메틸화효소(DNA methyltransferase) 억제제와 히스톤 아세틸화효소(histone deacetylase) 억제제가 부분적으로 노화를 개선하는 효과를 관찰한 연구사례들이 있다. 본 총설에서는, 노화에 따른 후생유전학적인 변화에 의해, 조절되는 노화 관련 유전자들과 중간엽줄기세포의 노화에 대한 연구사례들을 분석하여 서술하고자 한다.

BAP1 controls mesenchymal stem cell migration by inhibiting the ERK signaling pathway

  • Seobin Kim;Eun-Woo Lee;Doo-Byoung Oh;Jinho Seo
    • BMB Reports
    • /
    • 제57권5호
    • /
    • pp.250-255
    • /
    • 2024
  • Due to their stem-like characteristics and immunosuppressive properties, Mesenchymal stem cells (MSCs) offer remarkable potential in regenerative medicine. Much effort has been devoted to enhancing the efficacy of MSC therapy by enhancing MSC migration. In this study, we identified deubiquitinase BRCA1-associated protein 1 (BAP1) as an inhibitor of MSC migration. Using deubiquitinase siRNA library screening based on an in vitro wound healing assay, we found that silencing BAP1 significantly augmented MSC migration. Conversely, BAP1 overexpression reduced the migration and invasion capabilities of MSCs. BAP1 depletion in MSCs upregulates ERK phosphorylation, thereby increasing the expression of the migration factor, osteopontin. Further examination revealed that BAP1 interacts with phosphorylated ERK1/2, deubiquitinating their ubiquitins, and thus attenuating the ERK signaling pathway. Overall, our study highlights the critical role of BAP1 in regulating MSC migration through its deubiquitinase activity, and suggests a novel approach to improve the therapeutic potential of MSCs in regenerative medicine.

HA/TCP 골이식재상에 이식된 지방유래 줄기세포의 골모세포로의 분화 및 골형성에 대한 연구 (BONE REGENERATION WITH ADIPOSE TISSUE-DERIVED MESENCHYMAL STEM CELL AND HA/TCP)

  • 임재석;권종진;장현석;이의석;정유민;이태형;박정균
    • Maxillofacial Plastic and Reconstructive Surgery
    • /
    • 제32권2호
    • /
    • pp.97-106
    • /
    • 2010
  • Aim of the study: An alternative source of adult stem cells that could be obtained in large quantities, under local anesthesia, with minimal discomfort would be advantageous. Adipose tissue could be processed to obtain a fibroblast-like population of cells or adipose tissue-derived stromal cells (ATSCs). This study was performed to confirm the availability of ATSCs in bone tissue engineering. Materials amp; Methods: In this study, adipose tissue-derived mesenchymal stem cell was extracted from the liposuctioned abdominal fat of 24-old human and cultivated, and the stem cell surface markers of CD 105 and SCF-R were confirmed by immunofluorescent staining. The proliferation of bone marrow mesenchymal stem cell and ATSCs were compared, and evaluated the osteogenic differentiation of ATSCs in a specific osteogenic induction medium. Osteogenic differentiation was assessed by von Kossa and alkaline phosphatase staining. Expression of osteocyte specific BMP-2, ALP, Cbfa-1, Osteopontin and osteocalcin were confirmed by RT-PCR. With differentiation of ATSCs, calcium concentration was assayed, and osteocalcin was evaluated by ELISA (Enzyme-linked immunosorbant assay). The bone formation by 5-week implantation of HA/TCP block loaded with bone marrow mesenchymal stem cells and ATSCs in the subcutaneous pocket of nude mouse was evaluated by histologic analysis. Results: ATSCs incubated in the osteogenic medium were stained positively for von Kossa and alkaline phosphatase staining. Expression of osteocyte specific genes was also detected. ATSCs could be easily identified through fluorescence microscopy, and bone formation in vivo was confirmed by using ATSC-loaded HA/TCP scaffold. Conclusions: The present results show that ATSCs have an ability to differentiate into osteoblasts and formed bone in vitro and in vivo. So ATSCs may be an ideal source for further experiments on stem cell biology and bone tissue engineering.

인간 골수유래-중간엽 줄기세포(hBM-MSCs)에서 PDE4 억제조절을 통한 신경세포 분화 효율 개선 (Improvement of Neuronal Differentiation by PDE4 Inhibition in Human Bone Marrow-mesenchymal Stem Cells)

  • 정다희;조이슬;조광원
    • 생명과학회지
    • /
    • 제26권12호
    • /
    • pp.1355-1359
    • /
    • 2016
  • 인간 중간엽 줄기세포(hMSCs)는 신경세포(neuron-like cells)를 포함한 다양한 세포로 분화할 수 있는 능력을 지닌 성체 줄기세포(adult stem cells)이다. 본 연구에서는 인간의 골수유래-중간엽 줄기세포(bone marrow-mesenchymal stem cells; hBM-MSCs)를 이용한 신경분화에서 신경세포 표지자(neuronal marker)인 NF-M, Tuj-1 뿐만 아니라 성상세포 표지자(glial marker)인 GFAP의 발현 역시 의미 있게 증가함을 real-time PCR, Western blot, and immunocytochemical staining법을 통하여 관찰하였다. 이를 개선하기 위하여, 신경분화에 중요한 신호전달자(signal intermediator)인 PDE4를 억제한 후 신경분화를 유도하였다. PDE4 억제자인 rolipram 혹은 resveratrol를 각각 처리하여 신경분화한 줄기세포(Roli- or RSV-dMSCs)에서 NF-M, Tuj-1의 발현이 증가하였고 반면, GFAP의 발현은 감소함을 real-time PCR, Western blot, and immunocytochemical staining법을 통하여 관찰하였다. 본 연구를 통하여, PDE4를 조절하며 줄기세포의 신경분화를 개선할 수 있음을 보였다.

TRAIL Based Therapy: Overview of Mesenchymal Stem Cell Based Delivery and miRNA Controlled Expression of TRAIL

  • Attar, Rukset;Sajjad, Farhana;Qureshi, Muhammad Zahid;Tahir, Fizza;Hussain, Ejaz;Fayyaz, Sundas;Farooqi, Ammad Ahmad
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제15권16호
    • /
    • pp.6495-6497
    • /
    • 2014
  • Rapidly increasing number of outstanding developments in the field of TRAIL mediated signaling have revolutionized our current information about inducing and maximizing TRAIL mediated apoptosis in resistant cancer cells. Data obtained with high-throughput technologies have provided finer resolution of tumor biology and now it is known that a complex structure containing malignant cells strictly coupled with a large variety of surrounding cells constitutes the tumor stroma. Utility of mesenchymal stem cells (MSCs) as cellular vehicles has added new layers of information. There is sufficient experimental evidence substantiating efficient gene deliveries into MSCs by retroviral, lentiviral and adenoviral vectors. Moreover, there is a paradigm shift in molecular oncology and recent high impact research has shown controlled expression of TRAIL in cancer cells on insertion of complementary sequences for frequently downregulated miRNAs. In this review we have attempted to provide an overview of utility of TRAIL engineered MSCs for effective killing of tumor and potential of using miRNA response elements as rheostat like switch to control expression of TRAIL in cancer cells.

Induction of a Neuronal Phenotype from Human Bone Marrow-Derived Mesenchymal Stem Cells

  • Oh, Soon-Yi;Park, Hwan-Woo;Cho, Jung-Sun;Jung, Hee-Kyung;Lee, Seung-Pyo;Paik, Ki-Suk;Chang, Mi-Sook
    • International Journal of Oral Biology
    • /
    • 제34권4호
    • /
    • pp.177-183
    • /
    • 2009
  • Human mesenchymal stem cell (hMSCs) isolated from human adult bone marrow have self-renewal capacity and can differentiate into multiple cell types in vitro and in vivo. A number of studies have now demonstrated that MSCs can differentiate into various neuronal populations. Due to their autologous characteristics, replacement therapy using MSCs is considered to be safe and does not involve immunological complications. The basic helix-loop-helix (bHLH) transcription factor Olig2 is necessary for the specification of both oligodendrocytes and motor neurons during vertebrate embryogenesis. To develop an efficient method for inducing neuronal differentiation from MSCs, we attempted to optimize the culture conditions and combination with Olig2 gene overexpression. We observed neuron-like morphological changes in the hMSCs under these induction conditions and examined neuronal marker expression in these cells by RTPCR and immunocytochemistry. Our data demonstrate that the combination of Olig2 overexpression and neuron-specific conditioned medium facilitates the neuronal differentiation of hMSCs in vitro. These results will advance the development of an efficient stem cell-mediated cell therapy for human neurodegenerative diseases.

인간 지방조직에서 분리된 줄기세포의 표면항원 및 다분화능 확인 (Isolation and Characterization of Cells from Human Adipose Tissue Developing into Osteoblast and Adipocyte)

  • 조혜경
    • 대한임상검사과학회지
    • /
    • 제40권2호
    • /
    • pp.106-112
    • /
    • 2008
  • Bone marrow derived mesenchymal stem cells (BMSCs) are largely studied for their potential clinical use. But it is hard to get enough number of those cells for clinical trials and give serious pain to the patients. Adipose tissue is derived from the embryonic mesenchyme and contains a stroma that is easily isolated with large amount. This cell population (adipose derived stem cells: ADSCs) can be isolated from human lipoaspirates and like MSCs, differentiate toward the osteogenic, adipogenic, myogenic and chondrogenic lineages. To confirm whether adipose tissue contains stem cells, the ADSCs extracted from omental or subcutaneous fat tissue were expanded during third to fifth passages. The phenotype of the ADSCs was identified by the conventional cell surface markers using flow cytometry: positive for CD29 and CD44, but negative for CD34, CD45, CD117 and HLA-DR that similar to those observed on BMSCs. The ADSCs were able to differentiate into the osteoblast or adipocytes with induction media. Finally, ADACs expressed multiple CD marker antigens similar to those observed on BMSCs and differentiated into osteoblast, adipocyte. With this, human adipotissue contains multipotent cells and may represent an alternative stem cell source to bone marrow-derived MSCs.

  • PDF

TNF-α-Induced SOX5 Upregulation Is Involved in the Osteogenic Differentiation of Human Bone Marrow Mesenchymal Stem Cells Through KLF4 Signal Pathway

  • Xu, Lijun;Zheng, Lili;Wang, Zhifang;Li, Chong;Li, Shan;Xia, Xuedi;Zhang, Pengyan;Li, Li;Zhang, Lixia
    • Molecules and Cells
    • /
    • 제41권6호
    • /
    • pp.575-581
    • /
    • 2018
  • Postmenopausal osteoporosis (PMOP) is a common systemic skeletal disease characterized by reduced bone mass and microarchitecture deterioration. Although differentially expressed SOX5 has been found in bone marrow from ovariectomized mice, its role in osteogenic differentiation in human mesenchymal stem cells (hMSCs) from bone marrow in PMOP remains unknown. In this study, we investigated the biological function of SOX5 and explore its molecular mechanism in hMSCs from patients with PMOP. Our findings showed that the mRNA and protein expression levels of SOX5 were upregulated in hMSCs isolated from bone marrow samples of PMOP patients. We also found that SOX5 overexpression decreased the alkaline phosphatase (ALP) activity and the gene expression of osteoblast markers including Collagen I, Runx2 and Osterix, which were increased by SOX5 knockdown using RNA interference. Furthermore, $TNF-{\alpha}$ notably upregulated the SOX5 mRNA expression level, and SOX5 knockdown reversed the effect of $TNF-{\alpha}$ on osteogenic differentiation of hMSCs. In addition, SOX5 overexpression increased Kruppel-like factor 4 (KLF4) gene expression, which was decreased by SOX5 silencing. KLF4 knockdown abrogated the suppressive effect of SOX5 overexpression on osteogenic differentiation of hMSCs. Taken together, our results indicated that $TNF-{\alpha}$-induced SOX5 upregulation inhibited osteogenic differentiation of hMSCs through KLF4 signal pathway, suggesting that SOX5 might be a novel therapeutic target for PMOP treatment.