• Title/Summary/Keyword: Mesenchymal stem cell transplantation

Search Result 75, Processing Time 0.033 seconds

Functional recovery after transplantation of mouse bone marrow-derived mesenchymal stem cells for hypoxic-ischemic brain injury in immature rats (저산소 허혈 뇌 손상을 유발시킨 미성숙 흰쥐에서 마우스 골수 기원 중간엽 줄기 세포 이식 후 기능 회복)

  • Choi, Wooksun;Shin, Hye Kyung;Eun, So-Hee;Kang, Hoon Chul;Park, Sung Won;Yoo, Kee Hwan;Hong, Young Sook;Lee, Joo Won;Eun, Baik-Lin
    • Clinical and Experimental Pediatrics
    • /
    • v.52 no.7
    • /
    • pp.824-831
    • /
    • 2009
  • Purpose : We aimed to investigate the efficacy of and functional recovery after intracerebral transplantation of different doses of mouse mesenchymal stem cells (mMSCs) in immature rat brain with hypoxic-ischemic encephalopathy (HIE). Methods : Postnatal 7-days-old Sprague-Dawley rats, which had undergone unilateral HI operation, were given stereotaxic intracerebral injections of either vehicle or mMSCs and then tested for locomotory activity in the 2nd, 4th, 6th, and 8th week of the stem cell injection. In the 8th week, Morris water maze test was performed to evaluate the learning and memory dysfunction for a week. Results : In the open field test, no differences were observed in the total distance/the total duration (F=0.412, P=0.745) among the 4 study groups. In the invisible-platform Morris water maze test, significant differences were observed in escape latency (F=380.319, P<0.01) among the 4 groups. The escape latency in the control group significantly differed from that in the high-dose mMSC and/or sham group on training days 2-5 (Scheffe's test, P<0.05) and became prominent with time progression (F=6.034, P<0.01). In spatial probe trial and visible-platform Morris water maze test, no significant improvement was observed in the rats that had undergone transplantation. Conclusion : Although the rats that received a high dose of mMSCs showed significant recovery in the learning-related behavioral test only, our data support that mMSCs may be used as a valuable source to improve outcome in HIE. Further study is necessary to identify the optimal dose that shows maximal efficacy for HIE treatment.

Investigation of postnatal stem cells from canine dental tissue and bone marrow (성견 치계줄기세포 및 골수줄기세포 특성에 관한 연구)

  • Jhin, Min-Ju;Kim, Young-Sung;Kim, Su-Hwan;Kim, Kyoung-Hwa;Lee, Chul-Woo;Koo, Ki-Tae;Kim, Tae-Il;Seol, Yang-Jo;Ku, Young;Rhyu, In-Chul;Chung, Chong-Pyoung;Lee, Yong-Moo
    • Journal of Periodontal and Implant Science
    • /
    • v.39 no.2
    • /
    • pp.119-128
    • /
    • 2009
  • Purpose: The aim of this study was to evaluate the stemness of cells from canine dental tissues and bone marrow. Methods: Canine periodontal ligament stem cells (PDLSC), alveolar bone stem cells (ABSC) and bone marrow stem cells(BMSC) were isolated and cultured. Cell differentiations (osteogenic, adipogenic and chondrogenic) and surface antigens (CD146, STRO-1, CD44, CD90, CD45, CD34) were evaluated in vitro. The cells were transplanted into the subcutaneous space of nude mice to assess capacity for ectopic bone formation at 8 weeks after implantation. Results: PDLSC, ABSC and BMSC differentiated into osteoblasts, adipocytes and chondrocytes under defined condition. The cells expressed the mesenchymal stem cell markers differently. When transplanted into athymic nude mice, these three kinds of cells with hydroxyapatite /${\beta}$- tricalcium phosphate (HA/TCP) carrier showed ectopic bone formation. Conclusions: This study demonstrated that canine dental stem cells have stemness like bone marrow stem cells. Transplantation of these cells might be used as a therapeutic approach for dental stem cell-mediated periodontal tissue regeneration.

Establishment and Characterization of Bone Marrow Mesenchymal Stromal/Stem Cells (MSCs) Derived from ${\alpha}$-1,3-Galactosyltransferase Knock Out(GalT KO) Pig (${\alpha}$-1,3-Galactosyltransferase Knock Out(GalT KO) 돼지유래 골수 중간엽 줄기세포의 특성 규명)

  • Ock, Sun-A;Oh, Keon Bong;Hwang, Seongsoo;Im, Seoki;Kim, Youngim;Park, Jin-Ki
    • Journal of Embryo Transfer
    • /
    • v.28 no.3
    • /
    • pp.281-287
    • /
    • 2013
  • A major barrier to progress in pig to primate organ transplantation or cell therapy is the presence of terminal ${\alpha}$-1,3-galactosyl epitopes on the surface of pig cells. Therefore, the purpose of this experiment was to establish and cha- racterize mesenchymal stromal/stem cells (MSCs) derived from ${\alpha}$-1,3-galactosyltransferase (GalT) knock out (GalT KO) pig to confirm their potential for cell therapy. Bone marrow (BM)-MSCs from GalT KO pig of 1 month old were isolated by Ficoll-Paque PLUS gradient and cultured with A-DMEM + 10% FBS on plastic dishes in 5% $CO_2$ incubator at 38.5. GalT KO BM-MSCs were analyzed for the expression of CD markers ($CD45^-$, $29^+$, $90^+$ and $105^+$) and in vitro differentiation ability (adiopogenesis and osteogenesis). Further, cell proliferation capacity and cell aging of GalT KO BM-MSCs were compared to Wild BM-MSCs by BrdU incorporation assay (Roche, Germany) using ELISA at intervals of two days for 7 days. Finally, the cell size was also evaluated in GalT KO and Wild BM-MSCs. Statistical analysis was performed by T-test (P<0.05). GalT KO BM-MSCs showed fibroblast-like cell morphology on plastic culture dish at passage 1 and exhibited $CD45^-$, $29^+$, $90^+$ and $105^+$ expression profile. Follow in ginduction in StemPro adipogenesis and osteogenesis media for 3 weeks, GalT KO BM-MSCs were differentiated into adipocytes, as demonstrated by Oilred Ostaining of lipid vacuoles and osteocytes, as confirmed by Alizarinred Sstaining of mineral dispositions, respectively. BrdU incorporation assay showed a significant decrease in cell proliferation capacity of GalT KO BM-MSCs compared to Wild BM-MSCs from 3 day, when they were seeded at $1{\times}10^3$ cells/well in 96-well plate. Passage 3 GalT KO and Wild BM-MSCs at 80% confluence in culture dish were allowed to form single cells to calculate cell size. The results showed that GalT KO BM-MSCs($15.0{\pm}0.4{\mu}m$) had a little larger cell size than Wild BM-MSCs ($13.5{\pm}0.3{\mu}m$). From the above findings, it is summarized that GalT KO BM-MSCs possessed similar biological properties with Wild BM-MSCs, but exhibited a weak cell proliferation ability and resistance to cell aging. Therefore, GalT KO BM-MSCs might form a good source for cell therapy after due consideration to low proliferation potency in vitro.

Transdifferentiation of α-1,3-Galactosyltransferase Knock Out (GalT KO) Pig Derived Bone Marrow Mesenchymal Stromal Cells (BM-MSCs) into Pancreatic Cells by Transfection of hPDX1 (hPDX1 유전자의 삽입에 의한 직접 췌도세포 분화)

  • Ock, Sun A;Oh, Keon Bong;Hwang, Seongsoo;Kim, Youngim;Kwon, Dae-Jin;Im, Gi-Sun
    • Journal of Embryo Transfer
    • /
    • v.30 no.3
    • /
    • pp.249-255
    • /
    • 2015
  • Diabetes mellitus, the most common metabolic disorder, is divided into two types: type 1 and type 2. The essential treatment of type 1 diabetes, caused by immune-mediated destruction of ${\beta}-cells$, is transplantation of the pancreas; however, this treatment is limited by issues such as the lack of donors for islet transplantation and immune rejection. As an alternative approach, stem cell therapy has been used as a new tool. The present study revealed that bone marrowderived mesenchymal stromal cells (BM-MSCs) could be transdifferentiated into pancreatic cells by the insertion of a key gene for embryonic development of the pancreas, the pancreatic and duodenal homeobox factor 1 (PDX1). To avoid immune rejection associated with xenotransplantation and to develop a new cell-based treatment, BM-MSCs from ${\alpha}$-1,3-galactosyltransferase knockout (GalT KO) pigs were used as the source of the cells. Transfection of the EGFP-hPDX1 gene into GalT KO pig-derived BM-MSCs was performed by electroporation. Cells were evaluated for hPDX1 expression by immunofluorescence and RT-PCR. Transdifferentiation into pancreatic cells was confirmed by morphological transformation, immunofluorescence, and endogenous pPDX1 gene expression. At 3~4 weeks after transduction, cell morphology changed from spindle-like shape to round shape, similar to that observed in cuboidal epithelium expressing EGFP. Results of RT-PCR confirmed the expression of both exogenous hPDX1 and endogenous pPDX1. Therefore, GalT KO pig-derived BM-MSCs transdifferentiated into pancreatic cells by transfection of hPDX1. The present results are indicative of the therapeutic potential of PDX1-expressing GalT KO pig-derived BM-MSCs in ${\beta}-cell$ replacement. This potential needs to be explored further by using in vivo studies to confirm these findings.

Blood Vessel Regeneration using Human Umbilical Cord-derived Endothelial Progenitor Cells in Cyclophosphamide-treated Immune-deficient Mice

  • Kwon, Soon-Keun;Ko, Yu-Jin;Cho, Tae-Jun;Park, Eu-Gene;Kang, Byung-Chul;Lee, Gene;Cho, Jae-Jin
    • International Journal of Oral Biology
    • /
    • v.36 no.3
    • /
    • pp.117-122
    • /
    • 2011
  • Endothelial cells are a vital constituent of most mammalian organs and are required to maintain the integrity of these tissues. These cells also play a major role in angiogenesis, inflammatory reactions, and in the regulation of thrombosis. Angiogenesis facilitates pulp formation and produces the vessels which are essential for the maintenance of tooth homeostasis. These vessels can also be used in bone and tissue regeneration, and in surgical procedures to place implants or to remove cancerous tissue. Furthermore, endothelial cell regeneration is the most critical component of the tooth generation process. The aim of the present study was to stimulate endothelial regeneration at a site of acute cyclophosphamide (CP)-induced endothelial injury by treatment with human umbilical cord-derived endothelial/mesenchymal stem cells (hEPCs). We randomly assigned 16 to 20-week-old female NOD/SCID mice into three separate groups, a hEPC ($1{\times}10^5$ cells) transplanted, 300mg/kg CP treated and saline (control) group. The mice were sacrificed on days 5 and 10 and blood was collected via the abdominal aorta for analysis. The alanine transaminase (ALT), aspartate aminotransferase (AST), serum alkaline phosphatase (s-ALP), and albumin (ALB) levels were then evaluated. Tissue sections from the livers and kidneys were stained with hematoxylin and eosin (HE) for microscopic analysis and were subjected to immunohistochemistry to evaluate any changes in the endothelial layer. CP treatment caused a weight reduction after one day. The kidney/body weight ratio increased in the hEPC treated animals compared with the CP only group at 10 days. Moreover, hEPC treatment resulted in reduced s-ALP, AST, ALT levels compared with the CP only group at 10 days. The CP only animals further showed endothelial injuries at five days which were recovered by hEPC treatment at 10 days. The number of CD31-positive cells was increased by hEPC treatment at both 5 and 10 days. In conclusion, the CP-induced disruption of endothelial cells is recovered by hEPC treatment, indicating that hEPC transplantation has potential benefits in the treatment of endothelial damage.

Transformation of Adult Mesenchymal Stem Cells into Cardiomyocytes with 5-azacytidine: Isolated from the Adipose Tissues of Rat (성체 백서의 지방조직에서 추출한 중간엽 줄기세포의 5-azacytidine을 이용한 심근세포 분화 유도)

  • Choe Ju-Won;Kim Yong-In;Oh Tae-Yun;Cho Dai-Yoon;Sohn Dong-Suep;Lee Tae-Jin
    • Journal of Chest Surgery
    • /
    • v.39 no.7 s.264
    • /
    • pp.511-519
    • /
    • 2006
  • Background: Loss of cardiomyocytes in the myocardial infarction leads to regional contractile dysfunction, and necrotized cardiomyocytes in infracted ventricular tissues are progressively replaced by fibroblasts forming scar tissue. Although cardiomyoplasty, or implantation of ventricular assist device or artificial heart was tried in refractory heart failure, the cardiac transplantation was the only therapeutic modality because these other therapeutic strategies were not permanent. Cell transplantation is tried instead of cardiac transplantation, especially bone marrow is the most popular donated organ. But because bone marrow aspiration procedure is invasive and painful, and it had the fewer amounts of cellular population, the adipose tissue is recommended for harvesting of mesenchymal stem cells. Material and Method: After adipose tissues were extracted from abdominal subcutaneous adipose tissue and intra-abdominal adipose tissue individually, the cellular components were obtained by same method. These cellular components were tried to transformation with the various titers of 5-azacytidine to descript the appropriate concentration of 5-azacytidine and possibility of transformation ability of adipose tissue. Group 1 is abdominal subcutaneous adipose tissue and Group 2 is intra-abdominal adipose tissue-retroperitoneal adipose tissue and omentum. Cellular components were extracted by collagenase and $NH_4Cl$ et al, and these components were cultured by non-induction media - DMEM media containing 10% FBS and inducted by none, $3{\mu}mol/L,\;6{\mu}mol/L,\;and\;9{\mu}mol/L$ 5-azacytidine after the 1st and 2nd subculture. After 4 weeks incubation, tile cell blocks were made, immunostaining was done with the antibodies of CD34, heavy myosin chain, troponin T, and SMA. Result: Immunostaining of the transformed cells for troponin T was positive in the $6{\mu}mol/L\;&\;9{\mu}mol/L$ 5-azacytidine of Group 1 & 2, but CD34 and heavy myosin chain antibodies were negative and SMA antibody was positive in the $3{\mu}mol/L\;&\;6{\mu}mol/L$ 5-azacytidne of Group 2. Conclusion: These observations confirm that adult mesenchymal stem cells isolated from the abdominal subcutaneous adipose tissues and intra-abdominal adipose tissues can be chemically transformed into cardiomyocytes. This can potentially be a source of autologous cells for myocardial repair.

Estrogen Mediates Ischemic Damage and the Migration of Human Umbilical Cord Blood Cells

  • Kim, Jee-Yun;Yu, Seong-Jin;Kim, Do-Rim;Youm, Mi-Young;Lee, Chae-Kwan;Kang, Sung-Goo
    • Proceedings of the Korean Society of Developmental Biology Conference
    • /
    • 2003.10a
    • /
    • pp.71-71
    • /
    • 2003
  • Human umbilical cord blood cells(HUCBC) are rich in mesenchymal progenitor cells, endothelial cell precursors and hematopoietic cells. HUCBC have been used as a source of transplantable stem and progenitor cells. However, little is known about survival and development of HUCBC transplantation in the CNS. Estrogen has a neuroprotective potential against oxidative stress-induced cell death so has an effect on reducing infarct size of ischemic brain. We investigated the potential use of HUCBC as donor cells and tested whether estrogen mediates intravenously infused HUCBC enter and survive in ischemic brain. PKH26 labeled mononuclear fraction of HUCBC were injected into the tail vein of ischemic OVX rat brain with or without $17\beta$-estradiol valerate(EV). Under fluorescence microscopy, labeled cells were observed in the brain section. Significantly more cells were found in the ischemic brain than in the non-ischemic brain. HUCBC transplanted into ischemic brain could migrate and survive. Some of cells have shown neuronal like cells in hippocampus, striatum and cortex tissues. These result suggest that estrogen reduces ischemic damage and increases the migration of human umbilical cord blood cells. This Study was supported by the Korea Science and Engineering Foundation(KOSEF) though the Biohealth Products Research Center(BPRC), Inje University, Korea.

  • PDF

Highly Expressed Integrin-α8 Induces Epithelial to Mesenchymal Transition-Like Features in Multiple Myeloma with Early Relapse

  • Ryu, Jiyeon;Koh, Youngil;Park, Hyejoo;Kim, Dae Yoon;Kim, Dong Chan;Byun, Ja Min;Lee, Hyun Jung;Yoon, Sung-Soo
    • Molecules and Cells
    • /
    • v.39 no.12
    • /
    • pp.898-908
    • /
    • 2016
  • Despite recent groundbreaking advances in multiple myeloma (MM) treatment, most MM patients ultimately experience relapse, and the relapse biology is not entirely understood. To define altered gene expression in MM relapse, gene expression profiles were examined and compared among 16 MM patients grouped by 12 months progression-free survival (PFS) after autologous stem cell transplantation. To maximize the difference between prognostic groups, patients at each end of the PFS spectrum (the four with the shortest PFS and four with the longest PFS) were chosen for additional analyses. We discovered that integrin-${\alpha}8$ (ITGA8) is highly expressed in MM patients with early relapse. The integrin family is well known to be involved in MM progression; however, the role of integrin-${\alpha}8$ is largely unknown. We functionally overexpressed integrin-${\alpha}8$ in MM cell lines, and surprisingly, stemness features including $HIF1{\alpha}$, VEGF, OCT4, and Nanog, as well as epithelial mesenchymal transition (EMT)-related phenotypes, including N-cadherin, Slug, Snail and CXCR4, were induced. These, consequently, enhanced migration and invasion abilities, which are crucial to MM pathogenesis. Moreover, the gain of integrin-${\alpha}8$ expression mediated drug resistance against melphalan and bortezomib, which are the main therapeutic agents in MM. The cBioPortal genomic database revealed that ITGA8 have significant tendency to co-occur with PDGFRA and PDGFRB and their mRNA expression were up-regulated in ITGA8 overexpressed MM cells. In summary, integrin-${\alpha}8$, which was up-regulated in MM of early relapse, mediates EMT-like phenotype, enhancing migration and invasion; therefore, it could serve as a potential marker of MM relapse and be a new therapeutic target.