• 제목/요약/키워드: Mesenchymal Stem cells

검색결과 552건 처리시간 0.025초

The role of microRNAs in cell fate determination of mesenchymal stem cells : balancing adipogenesis and osteogenesis

  • Kang, Hara;Hata, Akiko
    • BMB Reports
    • /
    • 제48권6호
    • /
    • pp.319-323
    • /
    • 2015
  • Mesenchymal stem cells (MSCs) are multipotent stem cells capable of differentiating into adipocytes, osteoblasts, or chondrocytes. A mutually inhibitory relationship exists between osteogenic and adipogenic lineage commitment and differentiation. Such cell fate decision is regulated by several signaling pathways, including Wnt and bone morphogenetic protein (BMP). Accumulating evidence indicates that microRNAs (miRNAs) act as switches for MSCs to differentiate into either osteogenic or adipogenic lineage. Different miRNAs have been reported to regulate a master transcription factor for osteogenesis, such as Runx2, as well as molecules in the Wnt or BMP signaling pathway, and control the balance between osteoblast and adipocyte differentiation. Here, we discuss recent advancement of the cell fate decision of MSCs by miRNAs and their targets. [BMB Reports 2015; 48(6): 319-323]

줄기세포의 가능한 원천으로서의 장기표면 봉한소체 (Bong-Han Corpuscles as Possible Stem Cell Niches on the Organ-Surfaces)

  • 김민수;홍주영;홍수;이병천;남창훈;우희종;강대인;소광섭
    • 대한약침학회지
    • /
    • 제11권1호
    • /
    • pp.5-12
    • /
    • 2008
  • 목적 : 봉한소체가 성체줄기세포의 원천이며, 봉한관이 줄기세포 수송로일 가능성을 확인함. 방법 : 쥐의 내부 장기표면에서 봉한소체와 봉한관을 채취했다. 다양한 줄기세포 표지항체를 써서 면역조직학적 분석을 했다. 결과 : mesenchymal 줄기세포에 관한 Integrin ${\beta}1$, Collagen type 1, Fibronectin의 강한 발현을 확인했다. CD54는 발현되지 않았다. 조혈줄기세포에 관련하여 Thy 1의 발현이 있었다. 결론 : 골수조직과 유사하게 mesenchymal과 조혈줄기세포의 표지가 BHC에서 확인되었고, 봉한관에서는 vWF가 발현되어 줄기세포 수송로 가능성을 확인했다.

Modulation of osteoblastic/odontoblastic differentiation of adult mesenchymal stem cells through gene introduction: a brief review

  • Kim, Ji-Youn;Kim, Myung-Rae;Kim, Sun-Jong
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • 제39권2호
    • /
    • pp.55-62
    • /
    • 2013
  • Bone tissue engineering is one of the important therapeutic approaches to the regeneration of bones in the entire field of regeneration medicine. Mesenchymal stem cells (MSCs) are actively discussed as material for bone tissue engineering due to their ability to differentiate into autologous bone. MSCs are able to differentiate into different lineages: osteo/odontogenic, adipogenic, and neurogenic. The tissue of origin for MSCs defines them as bone marrow-derived stem cells, adipose tissue-derived stem cells, and, among many others, dental stem cells. According to the tissue of origin, DSCs are further stratified into dental pulp stem cells, periodontal ligament stem cells, stem cells from apical papilla, stem cells from human exfoliated deciduous teeth, dental follicle precursor cells, and dental papilla cells. There are numerous in vitro/in vivo reports suggesting successful mineralization potential or osteo/odontogenic ability of MSCs. Still, there is further need for the optimization of MSCs-based tissue engineering methods, and the introduction of genes related to osteo/odontogenic differentiation into MSCs might aid in the process. In this review, articles that reported enhanced osteo/odontogenic differentiation with gene introduction into MSCs will be discussed to provide a background for successful bone tissue engineering using MSCs with artificially introduced genes.

가토의 상악동 골이식술시 미분화 간엽 줄기세포의 골형성 효과 (THE EFFECTS OF UNDIFFERENTIATED MESENCHYMAL STEM CELLS ON SINUS BONE GRAFTING IN RABBIT)

  • 오승환;채영원;김범수;여인범;조필귀
    • Maxillofacial Plastic and Reconstructive Surgery
    • /
    • 제28권6호
    • /
    • pp.520-530
    • /
    • 2006
  • Undifferentiated mesencymal stem cells(UMSCs) have been thought to be multipotent cells that can replicate as undifferentiated cells and that have the potential to differentiate into lineages of mesenchymal tissue including the bone, cartilage, fat, tendon, muscle, and marrow stroma. It can be used to sinus lifting, Guided bone regeneration, other bone graft in dental part. The purpose of this study is to evaluate the effect of mesencymal stem cells on sinus augmentation with autogenous bone, fibrin glue mixture in a rabbit model. 8 New Zealand white rabbits were divided randomly into 4 groups based on their time of sacrifice(1, 2, 4 and 8 weeks). First, undifferentiated mesenchymal stem cells were isolated from iliac crest marrow of rabbits and expanded in vitro. cell culture was performed in accordance with the technique described by Tsutsumi et al. In the present study, The animals were sacrificed at 1, 2, 4 and 8 weeks after transplantation, and the bone formation ability of each sides was evaluated clinically, radiologically, histologically and histomorphologically. According to the histological observations, Stem cell group showed integrated graft bone with host bone from sinus wall. At 2 and 4weeks, It showed active newly formed bone and neovascularization. At 8 weeks, lamella bone was observed in sinus graft material area. Radiologically, autobone with stem cell showed more radiopaque than autobone without stemcell. there were significant differences in bone volume between 2 and 4 weeks (p<0.05). In summary, the autobone with stem cells had well-formed, newly formed bone and neovasculization, compared with the autobone without stem cells (esp. 2 weeks and 4 weeks) The findings of this experimental study indicate that the use of a mixture of mesenchymal stem cell yielded good results in osteogenesis and bone volume comparable with that achieved by autogenous bone. Therefore, this application of this promising new sinus floor elevation method for implants with tissue engineering technology deserves further study.

Surface Topographic Effect on Mesenchymal Stem Cells in Tissue Engineering

  • Yun, Young-Shik;Kang, Eun-Hye;Yun, In Sik;Kim, Yong Oock;Yeo, Jong-Souk
    • Journal of International Society for Simulation Surgery
    • /
    • 제4권1호
    • /
    • pp.1-8
    • /
    • 2017
  • In the field of tissue engineering, researches have been actively conducted to regulate stem cell fate by understanding the interaction between cell and materials. This approach is expected as a promising therapeutic method in the future medicine by utilizing differentiation of stem cells into desired cells or tissues using biomaterial. For this regenerative medicine, there exist lots of attempts to construct optimized structures of various shapes and sizes that can regulate the stem cell fate. In this review, we will empathize the topographic effect as stem cell niche on the mesenchymal stem cell (MSC) response (cell attachment, proliferation, and differentiation) according to the shape and size of the structure of the substrates, and comprehensively analyze the importance and the effect of shape and size of the surface topography.

Current perspectives in stem cell therapies for osteoarthritis of the knee

  • Kim, Gi Beom;Shon, Oog-Jin
    • Journal of Yeungnam Medical Science
    • /
    • 제37권3호
    • /
    • pp.149-158
    • /
    • 2020
  • Mesenchymal stem cells (MSCs) are emerging as an attractive option for osteoarthritis (OA) of the knee joint, due to their marked disease-modifying ability and chondrogenic potential. MSCs can be isolated from various organ tissues, such as bone marrow, adipose tissue, synovium, umbilical cord blood, and articular cartilage with similar phenotypic characteristics but different proliferation and differentiation potentials. They can be differentiated into a variety of connective tissues such as bone, adipose tissue, cartilage, intervertebral discs, ligaments, and muscles. Although several studies have reported on the clinical efficacy of MSCs in knee OA, the results lack consistency. Furthermore, there is no consensus regarding the proper cell dosage and application method to achieve the optimal effect of stem cells. Therefore, the purpose of this study is to review the characteristics of various type of stem cells in knee OA, especially MSCs. Moreover, we summarize the clinical issues faced during the application of MSCs.

임상적용을 위한 세포치료제로서의 성체 중간엽줄기세포 (Adult Mesenchymal Stem Cells for Cell Therapy in Clinical Application)

  • 송인환
    • Journal of Yeungnam Medical Science
    • /
    • 제26권1호
    • /
    • pp.1-14
    • /
    • 2009
  • Human bone marrow-derived mesenchymal stem cells (MSCs) are a rare population of undifferentiated cells that have the capacity of self renewal and the ability to differentiate into mesodermal phenotypes, including osteocytes, chondrocytes, and adipocytes in vitro. Recently, MSCs have been shown to reside within the connective tissue of most organs, and their surface phenotype has been well analyzed. Many reports showed that transplanted MSCs enhanced regeneration as well as functional improvement of damaged organs and tissues. The wide differentiation plasticity of MSCs was expected to contribute to their demonstrated efficacy in a wide variety of experimental animal models and in human clinical trials. However, new findings suggest that the ability of MSCs to alter the tissue microenvironment via secretion of soluble factors may contribute more significantly than their capacity for differentiation in tissue repair. This review describes what is known about the cellular characteristics and differentiation potential of MSCs, which represent a promising stem cell population for further applications in regenerative medicine.

  • PDF

Effect of Photobiomodulation on the Mesenchymal Stem Cells

  • Yoo, Shin Hyuk
    • Medical Lasers
    • /
    • 제9권2호
    • /
    • pp.119-125
    • /
    • 2020
  • Photobiomodulation forms the basis of photomedicine and is defined as the effect of coherent or non-coherent light sources, such as low-level lasers and light-emitting diodes, on cells and tissues. This treatment technique affects cell functions, proliferation, and migration, and plays an important role in tissue regeneration. Mesenchymal stem cells (MSCs) are known to be beneficial for tissue regeneration, and the combination of stem cell therapy and laser therapy appears to positively affect treatment outcomes. In general, a low-power laser has a positive effect on MSCs, thereby facilitating improvements in different disease models. This study elucidates the mechanisms and effects of low-power laser irradiation on the proliferation, migration, and differentiation of various MSCs that have been examined in different studies.

Exploring upregulated genes during osteogenic differentiation of hMSCs

  • Ahn, Se-Kyung;Rim, Jae-Suk;Kwon, Jong-Jin;Lee, Eui-Seok;Jang, Hyon-Seok
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • 제34권1호
    • /
    • pp.11-18
    • /
    • 2008
  • Human bone marrow mesenchymal stem cells are thought to be multipotent cells, which are present in adult marrow, that can replicate as undifferentiated cells and that have the potential to differentiate to lineages of mesenchymal tissues, including bone, cartilage, fat, tenden, muscle, and marrow stroma. Cells that have the characteristics of human mesenchymal stem cells could be isolated from marrow aspirates of human and animals. This study was designed to identify and characterize genes specifically expressed by osteogenic supplements -treated cells by suppression subtractive hybridization(SSH) method. The results were as follows: 1. 2 genes were upregulated genes in osteogenic diffeentiation of hMSCs, which is further proved by Northern blot analysis. 2. IGFBP-2 has been identified playing an important role in bone formation. 3. HF1 was also upregulated during osteogenic differentiation, but its role in bone formation is not clear yet.

Gene Profiles in a Smoke-Induced COPD Mouse Lung Model Following Treatment with Mesenchymal Stem Cells

  • Kim, You-Sun;Kokturk, Nurdan;Kim, Ji-Young;Lee, Sei Won;Lim, Jaeyun;Choi, Soo Jin;Oh, Wonil;Oh, Yeon-Mok
    • Molecules and Cells
    • /
    • 제39권10호
    • /
    • pp.728-733
    • /
    • 2016
  • Mesenchymal stem cells (MSCs) effectively reduce airway inflammation and regenerate the alveolus in cigarette- and elastase-induced chronic obstructive pulmonary disease (COPD) animal models. The effects of stem cells are thought to be paracrine and immune-modulatory because very few stem cells remain in the lung one day after their systemic injection, which has been demonstrated previously. In this report, we analyzed the gene expression profiles to compare mouse lungs with chronic exposure to cigarette smoke with non-exposed lungs. Gene expression profiling was also conducted in a mouse lung tissue with chronic exposure to cigarette smoke following the systemic injection of human cord blood-derived mesenchymal stem cells (hCB-MSCs). Globally, 834 genes were differentially expressed after systemic injection of hCB-MSCs. Seven and 21 genes, respectively, were up-and downregulated on days 1, 4, and 14 after HCB-MSC injection. The Hbb and Hba, genes with oxygen transport and antioxidant functions, were increased on days 1 and 14. A serine protease inhibitor was also increased at a similar time point after injection of hCB-MSCs. Gene Ontology analysis indicated that the levels of genes related to immune responses, metabolic processes, and blood vessel development were altered, indicating host responses after hCB-MSC injection. These gene expression changes suggest that MSCs induce a regeneration mechanism against COPD induced by cigarette smoke. These analyses provide basic data for understanding the regeneration mechanisms promoted by hCB-MSCs in cigarette smoke-induced COPD.