Fuzzy C-Means(FCM) 알고리즘은 초기 군집 중심의 개수와 위치에 따라 군집 결과의 성능차이가 많이 나타난다. 하지만 일반적인 경우에 군집 중심의 개수는 분석가의 주관에 의해 결정되고, 임의적으로 결정되기 때문에 원래 데이터의 구조와는 무관하게 수행되어 최적화된 군집화 수행을 실행하지 못하는 경우가 발생하게 된다. 따라서 본 논문에서는 원래의 데이터의 구조에 좀더 근접한 퍼지 군집화를 수행하기 위하여 격자를 바탕으로 한 데이터의 밀도를 이용한 FCM을 제안하고, 이러한 밀도 기반 FCM에 의해 결정된 군집의 합병 기법을 제안하였다. N-차원의 데이터 공간을 N-차원의 격자로 나누고, 초기 군집 중심의 개수와 위치는 각 격자의 밀도를 바탕으로 결정된다. 초기화 이후에 각 격자 내부에서 FCM을 이용하여 군집화를 수행하고, 계속해서 이웃 격자의 군집결과에 대하여 군집간의 유사도 측도를 이용하여 군집 합병을 수행함으로써 데이터의 자연적인 구조에 근접한 군집화를 수행하였다. 제안된 군집화 합병 기법의 향상된 성능은 UCI Machine Learning Repository 데이터를 이용하여 확인하였다.
In this paper, we propose a new edge based finite state vector quantization method having better performance than conventional side-match finite state vector quantization. In our proposed scheme, each dCT transformed block is classified to 17 classes according to edge types. Each class has a different codebook based on its characteristis. Encoder classified each block to motion block or stationary block and constructed a merging map by using edge and motion information, and sent to decoder. We controled amoutn of bing bits transmitted with selecting modes accoridng to bandwidth of transmitting channel. Compared with conventional algorithms, H.263 and H.261 at low bit rate, our proposed algorithm shows better picture quality and good performance.
진화 알고리즘은 자원 관리, 스케줄링, 퍼지 논리 재어기의 설계 등의 다양한 문제들에 적용되는, 일반적이고 효율적인 최적화 방법이다. 그러나 이러한 진화 알고리즘의 문제점은 탐색해야할 변수의 증가에 따라 차원의 증가로 인하여 탐색공간이 기하급수적으로 늘어난다는 것이다. 이러한 문제점을 해결하기 위해 Potter와 Dejong은 개개의 종족을 독립적으로 진화시킴으로써 탐색공간을 대폭 줄인, 협력 공진화 알고리즘을 제안하였다. 그러나 이것 또한 변수 의존성이 강한 문제들에 대해서는 비효율적인 탐색을 하는 문제점이 있다. 본 논문에서는 종족의 분할과 병합을 이용한 효율적인 공진화 알고리즘을 제안한다. 이 알고리즘은 최적화 하려는 변수들이 서로 의존성이 없는 경우에는 종족의 분할을 통하여 탐색공간의 축소의 이점을 얻고, 최적화 하려는 변수들이 서로 의존성이 있는 경우에는 종족의 병합을 통하여 전역탐색을 하도록 한다. 제안하는 알고리즘을 상품재고 제어 문제(ICP)로 실험하여 현존하는 어떤 공진화 알고리즘보다도 효율적인 결과를 보여준다.
Outlier detection and removal is a crucial step needed for various image processing applications such as image registration. Random Sample Consensus (RANSAC) is known to be the best algorithm so far for the outlier detection and removal. However RANSAC requires a cosiderable computation time. To drastically reduce the computation time while preserving the comparable quality, a outlier detection and removal method based on modified K-means is proposed. The original K-means was conducted first for matching point pairs and then cluster merging and member exclusion step are performed in the modification step. We applied the methods to various images with highly repetitive patterns under several geometric distortions and obtained successful results. We compared the proposed method with RANSAC and showed that the proposed method runs 3~10 times faster than RANSAC.
일반적으로 온톨로지는 관심 있는 특정 도메인에 대해 생성되므로 넓은 문제 영역에서 단일 온톨로지가 응답하는 것을 기대할 수 없다. 이것은 큰 작업에서 상이한 온톨로지의 데이터를 사용할 필요가 있음을 의미한다. 또한 대부분의 온톨로지는 한 사람이나 작은 그룹에 의해 개발되고, 그래프가 아닌 트리로 생각할 수 있다. 본 논문에서는 트리를 이용하여 온톨로지를 구축하고, 이해하고, 처리하는 효율적인 방법을 보이고자 한다. 온톨로지 병합 오퍼레이션의 정의를 위해 온톨로지의 구조, 구성 요소, 표현을 자세하게 정의하고, 두 온톨로지를 병합하는 방법에 대한 세부 사항을 보인다.
A multistage hierarchical clustering technique, which is an unsupervised technique, was suggested in this paper for classifying large remotely-sensed imagery. The multistage algorithm consists of two stages. The 'local' segmentor of the first stage performs region-growing segmentation by employing the hierarchical clustering procedure of CN-chain with the restriction that pixels in a cluster must be spatially contiguous. The 'global' segmentor of the second stage, which has not spatial constraints for merging, clusters the segments resulting from the previous stage, using the conventional agglomerative approach. Using simulation data, the proposed method was compared with another hierarchical clustering technique based on 'mutual closest neighbor.' The experimental results show that the new approach proposed in this study considerably increases in computational efficiency for larger images with a low number of bands. The technique was then applied to classify the land-cover types using the remotely-sensed data acquired from the Korean peninsula.
본 논문에서는 세포영상을 분할하고 분류하는 알고리즘을 제안한다. 우선, 배경으로부터 세포를 분할한 후, 학습데이터로부터 얻은 Compactness, Smoothness, Moments와 같은 형태학적 특징을 추출한다. 전경세포들이 분할된 후에, 보다 정밀한 세포분석을 위해서 군집세포(Overlapped Cell)와 독립세포(Isolated Cell)를 분류 할 수 있는 알고리즘의 개발이 필수적이다. 이를 위해서 본 논문에서는 베이지안 네트워크와 각 노드에 대한 3개의 확률밀도함수를 사용하여 각 세포 영역을 분류한다. 분류된 군집세포영역은 향후 정확한 세포 분석을 위해서 군집세포가 포함하는 독립세포의 수만큼 마커를 찾고, Watershed 알고리즘과 병합과정을 거쳐 하나의 독립세포를 분리하게 된다. 현미경으로부터 얻은 세포영상에 대한 실험 결과는 이전 논문들에서 제안한 방법들과 비교했을 때, 각 군집세포의 독립세포로의 분리 이전에 세포영역에 대한 분류과정을 먼저 수행하였기 때문에 분할 성능이 크게 향상되었음을 확인할 수 있다.
DNA 스트링과 같은 대용량의 데이타에 대한 빠른 검색을 수행하기 위해서는 전체 텍스트 인덱스 자료구조를 구축하여 검색하는 방법이 효율적이다. 가장 일반적인 인덱스 자료구조는 써픽스 트리와 써픽스 배열이다. 써픽스 배열은 써픽스 트리보다 적은 공간을 사용하기 때문에 DNA 스트링과 같은 대용량의 데이타에 적합한 자료구조이다. 기존의 써픽스 배열 구축 알고리즘들은 정수 문자집합에 적합한 알고리즘들이어서 DNA 스트링에 적합하지 않았다. 본 논문에서는 DNA 스트링의 문자집합이 4로 고정되어 있는 사실을 이용하여 DNA 스트링에 대한 써픽스 배열을 마르게 구축하는 방법을 제안한다. 고정길이 문자집합에 효율적인 Kim et. al.[1]의 알고리즘의 인코딩 과정과 합병 과정 개선으로 전체 구축 시간을 향상시켰다. 실험 결과 1.3배에서 1.6배 정도 구축 속도가 향상되었으며, 기존의 다른 써픽스 배열 구축 알고리즘들과 비교한 결과에서도 대부분 가장 빠르게 써픽스 배열을 구축하였다.
일반적으로, 영상 융합은 서로 다른 특징을 가지는 2개 이상의 영상을 이용하여 각 영상의 장점 및 특징을 모두 가지는 하나의 영상으로 재구성하는 것을 의미한다. 특히, 원격탐사 분야에서의 영상융합은 멀티스펙트럴 영상의 공간해상도를 향상시키는 것을 의미하며 이러한 이유로 인하여 Pan-sharpening 기술로도 불리어진다. 특히, 융합영상은 변화탐지, 영상 지도 제작, 도시 분석 등 다양한 분야에 적용 가능하기 때문에 중요성이 증대되고 있다. 그러나, 기존에 제안된 알고리즘들은 멀티스펙트럴 영상의 분광정보를 왜곡시키거나, 융합 영상의 공간해상도가 흑백영상의 공간해상도에 비하여 저하되는 문제를 지닌다. 이를 위해 본 논문에서는 멀티스펙트럴 영상의 분광 및 공간특성을 고려한 새로운 융합 방법론을 제안하였다. 본 알고리즘의 평가를 위해서 KOMPSAT-2, QuickBird 위성영상에 알고리즘을 적용을 하였으며, 기존의 영상융합 알고리즘에 비하여 공간적/분광적인 측면에서 모두 향상된 결과를 보임을 확인할 수 있었다.
본 논문에서는 선박의 안전 항행을 위하여 해양 IR 영상으로부터 선박, 암초, 부이 등과 같은 해상 물표를 탐지하기 위한 기법을 제안한다. 이를 위하여 먼저 주어진 IR 영상을 평탄화 한 후, 워터쉐드 알고리즘을 이용하여 영역을 분할한다. 워터쉐드 알고리즘은 거의 항상 과분할된 영역을 생성하기 때문에 의미있는 영역 분할을 위해 과분할 영역에 대한 병합 과정이 필요하다. 우리는 빠른 병합을 위해 픽셀에 대한 직접 접근을 단 2회만 수행하는 효율적인 영역 병합 알고리즘을 제안한다. 또한 해양 IR 영상에 대한 분석을 통해 해양 물표에서는 수평방향의 에지가 집중적으로 나타나는 것을 확인하였다. 따라서 본 논문에서는 주어진 영상으로부터 수평에 지를 추출한 후 모폴로지 연산을 통해 배경 및 잡음에 의해 만들어진 고립된 수평에지를 제거한 다음, 이전 단계에서 얻은 분할된 영역 중 수평 방향의 에지영역을 갖는 영역을 물표 영역으로 검출한다. 마지막으로 실험을 통하여 제안된 기법의 타당성을 보였다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.