• Title/Summary/Keyword: Mercury emission

Search Result 87, Processing Time 0.022 seconds

Characteristics of Hg, Pb, As, Se Emitted from Medium Size Waste Incinerators (중형폐기물 소각시설의 수은, 납, 비소, 셀렌 배출특성)

  • Lee Han-Kook
    • Journal of Environmental Health Sciences
    • /
    • v.32 no.1 s.88
    • /
    • pp.8-18
    • /
    • 2006
  • The aim of this study is to evaluate the emission characteristics of mercury, lead, arsenic, and selenium from medium size municipal solid waste incinerators(MSWIs) in Korea. The concentrations of mercury, lead, arsenic, and selenium emitted from medium size MSWI stack were $2.67\;{\mu}g/Sm^3,\;0.38\;mg/Sm^3,\;1.33\;{\mu}g/Sm^3,\;0.28\;{\mu}g/Sm^3$, respectively. The concentration levels of mercury, lead, arsenic in flue gas from medium size MSW incinerator stacks selected were nearly detected under the Korea criteria level. Removal efficiencies of mercury, lead, arsenic, and selenium in waste heat boiler(WHE) and cooling tower(CT) were $90.36\%,\;69.76\%,\;43.04\%,\;40.64\%$, respectively. In general, the removal efficiencies of mercury and lead in WHE were higher than those of arsenic and selenium in WHE. Emission gas temperature reduction from waste heat boiler(WHB) and cooling tower(CT) can control mercury and lead of medium size MSWIs. To evaluate the relationship between mercury, lead, arsenic, selenium of fly ash and those of flue gas, it was carried out to correlation analysis of each metal concentration in the fly ash and in the flue gas from medium size MSWIs. From the correlation analysis, the coefficients of mercury, lead, arsenic, and selenium were 0.61, -0.38, 0.87, 0.28, respectively. The results of correlation analysis revealed that it should be highly positive to the correlation coefficients of mercury and arsenic in the fly ash and those of the flue gas emitted from medium size MSWIs. As it were, the concentrations of mercury and arsenic of flue gas from medium size MSWIs are high unless mercury and arsenic in fly ash are properly controlled in dust collection step in medium size MSWIs. It was also concluded that mercury, lead, arsenic, and selenium from MSWIs stacks could be controlled by waste heat boiler(WHE) and dust collecting step in medium size MSWIs.

Emission Characteristics of Mercury in Zn Smelting Process (아연제련시설에서의 수은 배출특성)

  • Park, Jung-Min;Lee, Sang-Bo;Kim, Hyung-Chun;Song, Duk-Jong;Kim, Min-Su;Kim, Min-Jung;Kim, Yong-Hee;Lee, Sang-Hak;Kim, Jong-Chun;Lee, Suk-Jo
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.26 no.5
    • /
    • pp.507-516
    • /
    • 2010
  • Stationary combustion sources such as coal-fired power plants, waste incinerators, industrial manufacturing, etc. are recognized as major sources of mercury emissions. Due to rapid economic growth, zinc production in Korea has increased significantly during the last 30 years. Total zinc production in Korea exceeded 739,000 tons in 2008, and Korea is currently the third largest zinc producing country in the world. Previous studies have revealed that zinc smelting has become one of the largest single sectors of total mercury emissions in the World. However, studies on this sector are very limited, and a large gap in the knowledge regarding emissions from this sector needs to be bridged. In this paper, Hg emission measurements were performed to develop emission factors from zinc smelting process. Stack sampling and analysis were carried out utilizing the Ontario Hydro method and US EPA method 101A. Preliminary data showed that $Hg^0$ concentrations in the flue gas ranged from 4.56 to $9.90\;{\mu}g/m^3$ with an average of $6.40\;{\mu}g/m^3$, Hg(p) concentrations ranged from 0.03 to $0.09\;{\mu}g/m^3$ with an average of $0.04\;{\mu}g/m^3$, and RGM concentrations ranged from 0.23 to $1.17\;{\mu}g/m^3$ with an average of $6.40\;{\mu}g/m^3$. To date, emission factors of 7.5~8.0 g/ton for Europe, North America and Australia, and of 20 or 25 g/ton for Africa, Asia and South America are widely accepted by researchers. In this study, Hg emission factors were estimated using the data measured at the commercial facilities as emissions per ton of zinc product. Emission factors for mercury from zinc smelting pross ranged from 4.32 to 12.96 mg/ton with an average of 8.31 mg/ton. The emission factors that we obtained in this study are relatively low, considering Hg contents in the zinc ores and control technology in use. However, as these values are estimated by limited data of single measurement of each, the emission factor and total emission amount must be updated in future.

Mercury Exchange Flux from Two Different Soil Types and Affecting Parameters

  • Park, Sang-Young;Kim, Pyung-Rea;Han, Young-Ji
    • Asian Journal of Atmospheric Environment
    • /
    • v.7 no.4
    • /
    • pp.199-208
    • /
    • 2013
  • Mercury exchange fluxes between atmosphere and soil surface were measured in two different types of soils; lawn soil (LS) and forest soil (FS). Average Hg emission from LS was higher than from FS although the soil Hg content was more than 2 times higher in forest soil. In LS, Hg emissions were much greater in warm season than in cold season; however, deposition was dominant in FS during warm season because of leafy trees blocking the solar radiation reaching on the soil surface. In both LS and FS, Hg fluxes showed significantly positive correlations with UV radiation and soil surface temperature during cold season. In addition, it was observed that emission showed positive correlation with UV radiation and soil temperature while there was negative relationship between deposition and UV radiation.

Emission Characteristics of Discharge Tube with Mixed Gases

  • Jo, Ju-Ung;Park, Yong-Sung;Lee, Jong-Chan;Masaharu Aono;Park, Dae-Hee
    • KIEE International Transactions on Electrophysics and Applications
    • /
    • v.3C no.4
    • /
    • pp.136-139
    • /
    • 2003
  • The positive column of a discharge tube filled with a mixture of mercury-xenon has a tendency to become contracted at room temperature. However, once the tube temperature is raised over 50 [$^{\circ}C$], the positive column changes from a contracted state to a diffused state. The xenon emission is stronger in the contracted positive column than in the diffused column. Alternatively, the mercury emission is more intense in the diffused positive column, and the luminance of the phosphor coating on the inner surface of the tube is higher than that in the contracted positive column. Moreover, higher luminance can be obtained by increasing the xenon pressure.

A Study on the Comparison of Measuring Methods and Development of Emssion Factor on Mercury from Large-Scale Emission Sources (대형배출원에서의 수은 측정방법 비교 및 배출계수 개발에 관한 연구)

  • Kim, Hyung-Chun;Kim, Rhok-Ho;Kim, Jong-Hyeon;Lim, Seung-young;Kang, Dae-Il;Hong, Ji-Hyung;Jang, Kee-Won
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.32 no.2
    • /
    • pp.184-192
    • /
    • 2016
  • Recently, studies on reducing mercury have been actively conducted worldwide, which include the current status of mercury emissions and mercury control technology. Among the control technology, Sorbent Trap measurement method has been aggressively developed due to its reliability, easiness in measurement and analysis. The purpose of this study is to evaluate the applicability of the new international measurement method; Sorbent Trap. For this, the study compared the Sorbent trap method (US EPA Method 30B) and the Korean Standard Method for Examination of Air (ES 01408.1) to evaluate their reliability, and developed mercury emission factors. As the result, the relative standard deviations (% RSD) of the two methods were 3.5~13.4% at Coal-fired Power Plants (CPP), 4.0~18.4% at Cement Kilns (CK), and 3.0~11.3% at Medical Waste Incinerators (MWI). The emissions factors were developed as 14.50 kg/ton at CPP, 45.10 kg/ton at CK, and 1,290.2 kg/ton at MWI.

Toxic Effects and Distribution of Mercury in Barley Seedlings (보리 유식물에 처리한 수은의 분포 및 독성 연구)

  • 이춘환;장호식
    • Journal of Environmental Science International
    • /
    • v.1 no.1
    • /
    • pp.13-21
    • /
    • 1992
  • The inhibitory effects of mercury ions on the growth of barley seedlings were studied and the distribution of metal elements in the organs of treated plants was investigated by using synchrotron radiation induced X-ray emission (SRIXE). Although the treatment of mercury ions caused growth inhibition, the mercury-specific increase in variable fluorescence and the abolishment of energy-dependent quenching in broken barley chloroplasts as shown by Moon et at. (1992) were not observed in the leaves of growth-inhibited seedlings. Instead the treatment of mercury decreased Fmax and Fo values. However, Fmax/Fo ratio and photochemical and nonphotochemical quenching coefficients were not affected significantly. By SRIXE analysis of $10\mu\textrm{m}$ mercury chloride treated seedlings, accumulation of mercury in roots was observed after 1 hour of treatment and similar concentration was sustained for 48 hours. Relative contents of mercury was high in roots and underground nodes where seeds were attachedl but was very low in leaves. Iron and zinc were also distributed mainly in the lower parts of the seedlings. However after 72 hours of treatment the contents of these metals in roots decreased and their distribution became more uniform, which may lead to death of the plants. These results suggest that the observed inhibitory effects on barley seedlings upto 48 hours after the treatment is not due to direct damages in the photosynthetic apparatus, but due to its accumulation in roots and the consequent retardation of the growth of barley seedlings. The decrease in Fmax and Fo is probably due to the decrease in chlorophyll and protein contents caused by the retardation of growth. The observed slow expansion of primary leaves could be also explained by the retardation of growth, but the fluorescence induction pattern from the leaves did not show characteristic symptoms of leaves under water stress.

  • PDF

Preparation of Novel Sorbents for Gas-phase Mercury Removal

  • Lee, Si-Hyun;Rhim, Young-Jun;Park, Young-Ok
    • Carbon letters
    • /
    • v.3 no.4
    • /
    • pp.187-191
    • /
    • 2002
  • In the present research, we prepared the activated carbon (AC) sorbents to remove gas-phase mercury. The mercury adsorption of virgin AC, chemically treated AC and fly ash was performed. Sulfur impregnated and sulfuric acid impregnated ACs were used as the chemically treated ACs. A simulated flue gas was made of SOx, NOx and mercury vapor in nitrogen balance. A reduced mercury adsorption capacity was obtained with the simulated gas as compared with that containing only mercury vapor in nitrogen. With the simulated gas, the sulfuric acid treated AC showed the highest performance, but it might have the problem of corrosion due to the emission of sulfuric acid. It was also found that the high sulfur impregnated AC also released a portion of sulfur at $140^{\circ}C$. Thus, it was concluded that the low sulfur impregnated AC was suitable for the treatment of flue gas in terms of stability and efficiency.

  • PDF

Gas-Phase Mercury Control Technology from Flue Gas (연소배가스로부터 가스상 수은 처리기술)

  • 이시훈
    • Journal of Energy Engineering
    • /
    • v.12 no.2
    • /
    • pp.65-73
    • /
    • 2003
  • In Korea, not much interest has been paid yet to mercury among flue gas HAPs (Hazardous Air Pollutants), but mercury is expected to become a major problem in the near future. The present paper investigates the current state of mercury emission and control technologies. Interest of the U.S. and European countries in the area of air pollution has been recently directed to mercury emitted from power plants. There are largely two mercury removal technologies applied to power plants. One is removing mercury by oxidizing elemental mercury in WFGD (Wet Flue Gas Desulfurization), and the other is spraying an adsorbent such as activated carbon or other novel sorbents (low-cost sorbents). Developed country is requiring that all power plants be equipped with mercury control facilities by 2007. This paper aims at contributing to the establishment of future strategies in response to the problem.

Studies of the Exchange Processes of Mercury Across Air-soil Boundary (대기-토양 경계면간 수은의 교환현상에 대한 연구)

  • Kim, Ki-Hyun
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.26 no.2
    • /
    • pp.107-117
    • /
    • 2010
  • The atmospheric geochemistry of mercury is generalls represented by gaseous elemental phase that exhibits the high environmental mobility and relatively long atmospheric residence time (c.a., 1 year) with its high chemical stability. In the recognition of the environmental significance of its global cycling, enormous efforts have been devoted to the measurements of Hg exchange across air-soil boundary. To be able to describe the fundamental aspects on this subject, the current development in the measurements of atmospheric exchange rates of mercury has been summarized using the current database reported worldwide. As a first step, different techniques commonly employed in its measurements are introduced with the discussions on their merits and disadvantages. Then, the results derived from various field measurement campaigns are also compared and discussed. The direction for the future study of mercury is presented at last.

Mercury Emission Characteristics from Co-Combustion of Coal and Sludge (석탄과 슬러지의 혼합연소에 따른 수은 배출 특성)

  • Kang, Sin-Wook;Shim, Sung-Hoon;Jeong, Sang-Hyun;Jung, Jong-Hyeon;Lee, Sang-Sup
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.28 no.2
    • /
    • pp.182-189
    • /
    • 2012
  • Co-combustion of sludge with coal is proposed as an alternative option for sludge disposal instead of ocean dumping. Because the combustion of sludge can cause emissions of various air pollutants, it is important to understand the characteristics of sludge combustion flue gases. Especially, very few studies are found to investigate mercury emissions from the co-combustion of sludge with coal. In this study, coal and sludge samples were prepared with different mixing ratios. These samples were combusted in a bench-scale combustor, and their flue gases were analyzed. Due to higher mercury content in the sludge sample, higher mercury emissions were found with an increase in a ratio of sludge to coal. Compared to the combustion flue gas of the coal sample, higher levels of mercury oxidation were found in the combustion flue gas of the samples including sludge.