• Title/Summary/Keyword: Mercer kernel

Search Result 5, Processing Time 0.019 seconds

Adaptive Intrusion Detection System Based on SVM and Clustering (SVM과 클러스터링 기반 적응형 침입탐지 시스템)

  • Lee, Han-Sung;Im, Young-Hee;Park, Joo-Young;Park, Dai-Hee
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.13 no.2
    • /
    • pp.237-242
    • /
    • 2003
  • In this paper, we propose a new adaptive intrusion detection algorithm based on clustering: Kernel-ART, which is composed of the on-line clustering algorithm, ART (adaptive resonance theory), combining with mercer-kernel and concept vector. Kernel-ART is not only satisfying all desirable characteristics in the context of clustering-based IDS but also alleviating drawbacks associated with the supervised learning IDS. It is able to detect various types of intrusions in real-time by means of generating clusters incrementally.

Mercer Kernel Isomap

  • Choi, Hee-Youl;Choi, Seung-Jin
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2005.07b
    • /
    • pp.748-750
    • /
    • 2005
  • Isomap [1] is a manifold learning algorithm, which extends classical multidimensional scaling (MDS) by considering approximate geodesic distance instead of Euclidean distance. The approximate geodesic distance matrix can be interpreted as a kernel matrix, which implies that Isomap can be solved by a kernel eigenvalue problem. However, the geodesic distance kernel matrix is not guaranteed to be positive semidefinite. In this paper we employ a constant-adding method, which leads to the Mercer kernel-based Isomap algorithm. Numerical experimental results with noisy 'Swiss roll' data, confirm the validity and high performance of our kernel Isomap algorithm.

  • PDF

Intrusion detection algorithm based on clustering : Kernel-ART

  • Lee, Hansung;Younghee Im;Park, Jooyoung;Park, Daihee
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2002.05a
    • /
    • pp.109-113
    • /
    • 2002
  • In this paper, we propose a new intrusion detection algorithm based on clustering: Kernel-ART, which is composed of the on-line clustering algorithm, ART (adaptive resonance theory), combining with mercer-kernel and concept vector. Kernel-ART is not only satisfying all desirable characteristics in the context of clustering-based 105 but also alleviating drawbacks associated with the supervised learning IDS. It is able to detect various types of intrusions in real-time by means of generating clusters incrementally.

  • PDF

News Video Shot Boundary Detection using Singular Value Decomposition and Incremental Clustering (특이값 분해와 점증적 클러스터링을 이용한 뉴스 비디오 샷 경계 탐지)

  • Lee, Han-Sung;Im, Young-Hee;Park, Dai-Hee;Lee, Seong-Whan
    • Journal of KIISE:Software and Applications
    • /
    • v.36 no.2
    • /
    • pp.169-177
    • /
    • 2009
  • In this paper, we propose a new shot boundary detection method which is optimized for news video story parsing. This new news shot boundary detection method was designed to satisfy all the following requirements: 1) minimizing the incorrect data in data set for anchor shot detection by improving the recall ratio 2) detecting abrupt cuts and gradual transitions with one single algorithm so as to divide news video into shots with one scan of data set; 3) classifying shots into static or dynamic, therefore, reducing the search space for the subsequent stage of anchor shot detection. The proposed method, based on singular value decomposition with incremental clustering and mercer kernel, has additional desirable features. Applying singular value decomposition, the noise or trivial variations in the video sequence are removed. Therefore, the separability is improved. Mercer kernel improves the possibility of detection of shots which is not separable in input space by mapping data to high dimensional feature space. The experimental results illustrated the superiority of the proposed method with respect to recall criteria and search space reduction for anchor shot detection.

Truncated Kernel Projection Machine for Link Prediction

  • Huang, Liang;Li, Ruixuan;Chen, Hong
    • Journal of Computing Science and Engineering
    • /
    • v.10 no.2
    • /
    • pp.58-67
    • /
    • 2016
  • With the large amount of complex network data that is increasingly available on the Web, link prediction has become a popular data-mining research field. The focus of this paper is on a link-prediction task that can be formulated as a binary classification problem in complex networks. To solve this link-prediction problem, a sparse-classification algorithm called "Truncated Kernel Projection Machine" that is based on empirical-feature selection is proposed. The proposed algorithm is a novel way to achieve a realization of sparse empirical-feature-based learning that is different from those of the regularized kernel-projection machines. The algorithm is more appealing than those of the previous outstanding learning machines since it can be computed efficiently, and it is also implemented easily and stably during the link-prediction task. The algorithm is applied here for link-prediction tasks in different complex networks, and an investigation of several classification algorithms was performed for comparison. The experimental results show that the proposed algorithm outperformed the compared algorithms in several key indices with a smaller number of test errors and greater stability.