• Title/Summary/Keyword: Mendelian disorders

Search Result 4, Processing Time 0.02 seconds

Exome Sequencing in Mendelian Disorders (엑솜 염기서열 분석 방법을 이용한 단일유전자질환의 원인 유전자 발굴)

  • Lee, Jong-Keuk
    • Journal of Genetic Medicine
    • /
    • v.7 no.2
    • /
    • pp.119-124
    • /
    • 2010
  • More than 7,000 rare Mendelian diseases have been reported, but less than half of all rare monogenic disorders has been discovered. In addition, the majority of mutations that are known to cause Mendelian disorders are located in protein-coding regions. Therefore, exome sequencing is an efficient strategy to selectively sequence the coding regions of the human genome to identify novel genes associated with rare genetic disorders. The "exome" represents all of the exons in the human genome, constituting about 1.5% of the human genome. Exome sequencing is carried out by targeted capture and intense parallel sequencing. After the first report of successful exome sequencing for the identification of causal genes and mutations in Freeman Sheldon syndrome, exome sequencing has become a standard approach to identify genes in rare Mendelian disorders. Exome sequencing is also used to search the causal genes and variants in complex diseases. The successful use of exome sequencing in Mendelian disorders and complex diseases will facilitate the development of personalized genomic medicine.

Genetic classification and confirmation of inherited platelet disorders: current status in Korea

  • Shim, Ye Jee
    • Clinical and Experimental Pediatrics
    • /
    • v.63 no.3
    • /
    • pp.79-87
    • /
    • 2020
  • Inherited platelet disorders (IPDs), which manifest as primary hemostasis defects, often underlie abnormal bleeding and a family history of thrombocytopenia, bone marrow failure, hematologic malignancies, undefined mucocutaneous bleeding disorder, or congenital bony defects. Wide heterogeneity in IPD types with regard to the presence or absence of thrombocytopenia, platelet dysfunction, bone marrow failure, and dysmegakaryopoiesis is observed in patients. The individual processes involved in platelet production and hemostasis are genetically controlled; to date, mutations of more than 50 genes involved in various platelet biogenesis steps have been implicated in IPDs. Representative IPDs resulting from defects in specific pathways, such as thrombopoietin/MPL signaling; transcriptional regulation; granule formation, trafficking, and secretion; proplatelet formation; cytoskeleton regulation; and transmembrane glycoprotein signaling are reviewed, and the underlying gene mutations are discussed based on the National Center for Biotechnology Information database and Online Mendelian Inheritance in Man accession number. Further, the status and prevalence of genetically confirmed IPDs in Korea are explored based on searches of the PubMed and KoreaMed databases. IPDs are congenital bleeding disorders that can be dangerous due to unexpected bleeding and require genetic counseling for family members and descendants. Therefore, the pediatrician should be suspicious and aware of IPDs and perform the appropriate tests if the patient has unexpected bleeding. However, all IPDs are extremely rare; thus, the domestic incidences of IPDs are unclear and their diagnosis is difficult. Diagnostic confirmation or differential diagnoses of IPDs are challenging, time-consuming, and expensive, and patients are frequently misdiagnosed. Comprehensive molecular characterization and classification of these disorders should enable accurate and precise diagnosis and facilitate improved patient management.

Exome and genome sequencing for diagnosing patients with suspected rare genetic disease

  • Go Hun Seo;Hane Lee
    • Journal of Genetic Medicine
    • /
    • v.20 no.2
    • /
    • pp.31-38
    • /
    • 2023
  • Rare diseases, even though defined as fewer than 20,000 in South Korea, with over 8,000 rare Mendelian disorders having been identified, they collectively impact 6-8% of the global population. Many of the rare diseases pose significant challenges to patients, patients' families, and the healthcare system. The diagnostic journey for rare disease patients is often lengthy and arduous, hampered by the genetic diversity and phenotypic complexity of these conditions. With the advent of next-generation sequencing technology and clinical implementation of exome sequencing (ES) and genome sequencing (GS), the diagnostic rate for rare diseases is 25-50% depending on the disease category. It is also allowing more rapid new gene-disease association discovery and equipping us to practice precision medicine by offering tailored medical management plans, early intervention, family planning options. However, a substantial number of patients remain undiagnosed, and it could be due to several factors. Some may not have genetic disorders. Some may have disease-causing variants that are not detectable or interpretable by ES and GS. It's also possible that some patient might have a disease-causing variant in a gene that hasn't yet been linked to a disease. For patients who remain undiagnosed, reanalysis of existing data has shown promises in providing new molecular diagnoses achieved by new gene-disease associations, new variant discovery, and variant reclassification, leading to a 5-10% increase in the diagnostic rate. More advanced approach such as long-read sequencing, transcriptome sequencing and integration of multi-omics data may provide potential values in uncovering elusive genetic causes.

Antisense Oligonucleotide Therapeutics for Cystic Fibrosis: Recent Developments and Perspectives

  • Young Jin Kim;Adrian R. Krainer
    • Molecules and Cells
    • /
    • v.46 no.1
    • /
    • pp.10-20
    • /
    • 2023
  • Antisense oligonucleotide (ASO) technology has become an attractive therapeutic modality for various diseases, including Mendelian disorders. ASOs can modulate the expression of a target gene by promoting mRNA degradation or changing pre-mRNA splicing, nonsense-mediated mRNA decay, or translation. Advances in medicinal chemistry and a deeper understanding of post-transcriptional mechanisms have led to the approval of several ASO drugs for diseases that had long lacked therapeutic options. For instance, an ASO drug called nusinersen became the first approved drug for spinal muscular atrophy, improving survival and the overall disease course. Mutations in the cystic fibrosis transmembrane conductance regulator (CFTR) gene cause cystic fibrosis (CF). Although Trikafta and other CFTR-modulation therapies benefit most CF patients, there is a significant unmet therapeutic need for a subset of CF patients. In this review, we introduce ASO therapies and their mechanisms of action, describe the opportunities and challenges for ASO therapeutics for CF, and discuss the current state and prospects of ASO therapies for CF.