• Title/Summary/Keyword: Menaquinone-7

Search Result 34, Processing Time 0.027 seconds

Isolation and Identification of Halotolerant Bacillus sp. SJ-10 and Characterization of Its Extracellular Protease (세포외 Protease를 생산하는 내염성 Bacillus sp. SJ-10 균주의 분리 동정 및 효소 특성)

  • Kim, Eun-Young;Kim, Dong-Gyun;Kim, Yu-Ri;Choi, Sun-Young;Kong, In-Soo
    • Korean Journal of Microbiology
    • /
    • v.45 no.2
    • /
    • pp.193-199
    • /
    • 2009
  • A bacterium producing the halotolerant extracellular protease was isolated from squid jeotgal, and was identified as Bacillus sp. SJ-10 based on morphological, physiological and biochemical characteristics, as well as phylogenetic analysis using 16S rRNA gene sequence. The strain grew at $20^{\circ}C\sim55^{\circ}C$, pH 5~8, and 0%~14% NaCl and optimal growth conditions were $35{\pm}5^{\circ}C$, pH 7, and 5% NaCl. The major cellular fatty acids were anteiso-$C_{15:0}$, anteiso-$C_{17:0}$, and $C_{16:0}$ DNA G+C content was 50.58 mol% and menaquinone consisted of MK-7 Phylogenic analysis based on the 16S rRNA gene sequence indicated that SJ-10T belongs to the genus Bacillus. About 40 kDa of the salt-tolerant protease was purified by 40% ammonium sulfate saturation and Mono Q column chromatography. The optimal activity of the protease was pH 8 and stable at pH 5~10. The optimum temperature and NaCl concentration were $35{\pm}5^{\circ}C$ and $5{\pm}1%$, respectively.

Identification of Adenosine Deaminase Inhibitor-producing Bacterium Isolated from Soil

  • SHIN, YONG KOOK;YONG-HA PARK;JAE-DONG LEE;HONG-KI JUN
    • Journal of Microbiology and Biotechnology
    • /
    • v.7 no.1
    • /
    • pp.32-36
    • /
    • 1997
  • An adenosine deaminase inhibitor-producing bacterium was isolated from soil. An isolate exhibiting high adenosine deaminase inhibitory activity, was designated J-89, and classified as a strain of Bacillus subtilis on the basis of its morphological, phenotypic characteristics, the menaquinone content and cellular fatty acid composition. To confirm the taxonomic position of the strain we need more information such as DNA-DNA homology and other chemotaxonomic characteristics. In this paper we provisionally named strain J-89 as Bacillus sp. J-89 pending further chemotaxonomic study and analysis of adenosine deaminase inhibitor.

  • PDF

Isoprenoid Quinone Profiles of the Leclercia adecarboxylata KCTC $l036^T$

  • Shin, Yong Kook;Jung Sook Lee;Chang Ouk Chun;Hong Joong Kim;Yong Ha Park
    • Journal of Microbiology and Biotechnology
    • /
    • v.6 no.1
    • /
    • pp.68-69
    • /
    • 1996
  • The isoprenoid quinone composition of Leclercia adecarboxylata KCTC $1036^T$ was determined by using high-performance liquid chromatography. L. adecarboxylata KCTC $1036^T$ are characterized by their production of both ubiquinone-7, ubiquinone-8 and menaquinone-8 as major quinones. It is clear that the analysis of isoprenoid quinone profiles provides a new criterion of great promise for identifying Leclercia strains.

  • PDF

Pedobacter xinjiangensis sp. nov., from the Desert, Xinjiang

  • Tang, Yali;Wang, Yang;Ji, Shanming;Zhang, Kundi;Dai, Jun;Zhang, Lei;Peng, Fang;Fang, Chengxiang
    • Journal of Microbiology and Biotechnology
    • /
    • v.20 no.2
    • /
    • pp.397-402
    • /
    • 2010
  • A Gram-negative, rod-shaped, gliding, aerobic bacterium, designated $12157^T$, was isolated from the desert of Xinjiang, China and subjected to a polyphasic taxonomic study. The strain $12157^T$ grew optimally at pH 7.0 and $30^{\circ}C$. MK-7 was the predominant respiratory menaquinone. The DNA G+C content was 42.0 mol%. Phylogenetic analysis based on the 16S rRNA gene sequences showed that the isolate was mostly related to members of the genus Pedobacter, with similarities ranging from 90.0% to 93.7%. Phylogenetic evidence and the results of phenotypic and genotypic analyses support the establishment of a novel species, Pedobacter xinjiangensis sp. nov., with strain $12157^T$ (=CCTCC AB $208092^T$=NRRL B-$51338^T$) as the type strain.

Isolation and Characterization of a Xylanolytic Bacterium, Bacillus sp. MX47 (Xylanase 생산균 Bacillus sp. MX47의 분리 및 동정)

  • Chi, Won-Jae;Park, Da Yeon;Park, Jae-Seon;Hong, Soon-Kwang
    • Microbiology and Biotechnology Letters
    • /
    • v.40 no.4
    • /
    • pp.419-423
    • /
    • 2012
  • A xylanolytic bacterial strain, MX47, was isolated from rotting plant matter in soil. The strain was aerobic and gram positive, and grew between pH 6.0 and 11.0. Cells were susceptible to thiostrepton and chloramphenicol. The major fatty acids (>3%) comprised 64.55% of iso-$C_{15:0}$, 22.76% of anteiso-$C_{15:0}$, and 3.92% of iso-$C_{17:0}$. The G/C content of the DNA was 44.15 mol%. The predominant respiratory quinone was menaquinone 7 (MK-7). Searches for 16S rRNA gene sequence similarity as well as phylogenetic analyses strongly suggested that the strain should be classified to the genus Bacillus. However, its biochemical characteristics, including acid production and enzyme activities, are different from those of other Bacillus strains in the same clade, and therefore, we propose the name Bacillus sp. MX47.

Cohnella damensis sp. nov., a Motile Xylanolytic Bacteria Isolated from a Low Altitude Area in Tibet

  • Luo, Xuesong;Wang, Zhang;Dai, Jun;Zhang, Lei;Fang, Chengxiang
    • Journal of Microbiology and Biotechnology
    • /
    • v.20 no.2
    • /
    • pp.410-414
    • /
    • 2010
  • A bacterial strain, 13-$25^T$ with xylanolytic activity isolated from a single soil sample, was characterized with respect to its phenetic and phylogenetic characteristics. The cells of the isolate are Gram-staining variable rods, but spore formation was not observed. This strain is catalase- and oxidase-positive, and able to degrade starch and xylan. The predominant fatty acids are anteiso-$C_{15:0}$, $C_{16:0}$, and iso-$C_{16:0}$. The major respiratory quinone is menaquinone 7(MK-7), with a polar lipid profile consistent with the genus Cohnella. The DNA G+C content is 54.3 mol%. The 168 rRNA gene sequence analysis indicates that this organism belongs to the genus Cohnella, with Cohnella panacarvi as the closest phylogenetic neighbor. Low levels of 168 rRNA gene sequence similarity (<97.0%) with respect to other taxa with published names and the identification of distinctive phenetic features in the isolate indicate that the strain 13-$25^T$ represents a novel species of the genus Cohnella, for which the name Cohnella damensis sp. novo is proposed. The type strain is 13-$25^T$ (=CCTCC AB $208103^T$=KCTC $13422^T$).

Microbial Community Structure and Treatment Characteristics of Domestic Wastewater in the Intermittently Aerated Membrane Bioreactor (간헐포기MBR공정에서의 하수처리성능과 미생물의 군집구조해석)

  • Lim, Byung-Ran;Ahn, Kyu-Hong
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.16 no.6
    • /
    • pp.679-685
    • /
    • 2002
  • The objective of this study was investigated for the microbial community structure and treatment performance of domestic wastewater in lab-scale submerged membrane bioreactor operated with anoxic-oxic cycles. Respiratory quinone profiles were applied as tools for identifying different bacterial populations. The cycle time program of bioreactor was control under anoxic/oxic of 60/90 minutes with an hydraulic retention time of 8.4 hrs. The average $COD_{Cr}$ removal efficiency of domestic wastewater was as high as 93%. The results showed complete nitrification of $NH_4^+$-N generated during oxic period and up to 50% of the total nitrogen could be denitrified. The dominant quinone types of suspended microorganisms in bioreactor were ubiquinone (UQ)-8, -10, followed by menaquinone (MK)-6, and MK-7 for anoxic period, but those for oxic period were UQ-8, MK-6, followed by UQ-10 and MK-7. The microbial diversities of bioreactor at anoxic and oxic periods, calculated based on the composition of all quinones were 10.4 and 12.2-11.8, respectively. The experimental results showed that the microbial community structure in the submerged membrane bioreactor treating domestic wastewater was slightly affected by intermittent aeration.

Cohnella panacarvi sp. nov., a Xylanolytic Bacterium Isolated from Ginseng Cultivating Soil

  • Yoon, Min-Ho;Ten, Leonid N.;Im, Wan-Taek
    • Journal of Microbiology and Biotechnology
    • /
    • v.17 no.6
    • /
    • pp.913-918
    • /
    • 2007
  • A Gram-positive, aerobic, rod-shaped, nonmotile, endospore-forming bacterium, designated Gsoil $349^T$, was isolated from soil of a ginseng field and characterized using a polyphasic approach. Comparative analysis of 16S rRNA gene sequences revealed that the strain Gsoil $349^T$ belongs to the family Paenibacillaceae, and the sequence showed closest similarity with Cohnella thermotolerans DSM $17683^T$ (94.1%) and Cohnella hongkongensis DSM $17642^T$ (93.6%). The strain showed less than 91.3% 16S rRNA gene sequence similarity with Paenibacillus species. In addition, the presence of MK-7 as the major menaquinone and $anteiso-C_{15:0},\;iso-C_{16:0},\;and\;C_{16:0}$ as major fatty acids suggested its affiliation to the genus Cohnella. The G+C content of the genomic DNA was 53.4 mol%. On the basis of its phenotypic characteristics and phylogenetic distinctiveness, strain Gsoil $349^T$ should be treated as a novel species within the genus Cohnella for which the name Cohnella panacarvi sp. nov. is proposed. The type strain is Gsoil $349^T\;(=KCTC\;13060^T=\;DSM\;18696^T)$.

Flavobacterium amnigenum sp. nov. Isolated from a River

  • Patil, Kishor Sureshbhai;Padakandla, Shalem Raj;Chae, Jong-Chan
    • Journal of Microbiology and Biotechnology
    • /
    • v.28 no.9
    • /
    • pp.1536-1541
    • /
    • 2018
  • A yellowish, flexirubin-pigment-producing strain $I3-3^T$ was isolated from river water in Iksan, the Republic of Korea. The strain was gram-negative, aerobic, non-motile, showed catalase and oxidase activities, and could grow at a temperature range of $10-35^{\circ}C$, pH 5.0-10 and 0-2.0% (w/v) of NaCl. The major fatty acids were iso-$C_{15:0}$, iso-$C_{17:0}$ 3-OH and summed feature 3 (comprising $C_{16:1}{\omega}7c$ and/or $C_{16:1}{\omega}6c$). The isolate contained phosphatidylethanolamine, one aminolipid, and two unidentified lipids as the major polar lipids. Menaquinone-6 (MK6) was the major respiratory quinone. The G+C content of the genomic DNA of strain $I3-3^T$ was 35.6%. Comparison of the 16S rRNA gene sequence with the sequences of the closely related type strains showed highest sequence similarity of 96.95% and 96.93% to Flavobacterium nitrogenifigens $NXU-44^T$ and Flavobacterium compostarboris $15C3^T$, respectively. Based on phenotypic and phylogenetic distinctiveness, strain $I3-3^T$ is considered as a member of novel species within the genus Flavobacterium, for which Flavobacterium amnigenum sp. nov. is proposed. The type strain is $I3-3^T$ (=KCTC $52884^T$ =NBRC $112871^T$).

Analysis of Microbial Community Structure in River Ecosystem Using Quinone Profiles (Quinone profile를 이용한 하천생태계의 미생물군집구조 해석)

  • Lim, Byung-Ran;Lee, Kisay;Ahn, Kyu-Hong
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.20 no.5
    • /
    • pp.685-690
    • /
    • 2006
  • The differences in microbial community structures between planktonic microorganism and biofilm in rivers were investigated using respiratory quinone profiles. The compositions of microbial quinone for 4 tributaries of the Kyongan Stream located in/flowing through Yongin City, Gyeonggi-Do were analyzed. Ubiquinone(UQ)-8, UQ-9, menaquinone(MK)-6 and Plastoquinone(PQ)-9 were observed in all samples of planktonic microorganism and biofilm for the sites investigated, Most planktonic microorganism and biofilm had UQ-8(15 to 30%) and PQ-9(over 30%) as the dominant quinone type. These results indicated that oxygenic phototrophic microbes(cyanobacteria and/or eukaryotic phytoplankton) and UQ-8 containing proteobacteria constituted major microbial populations in the river. The quinone concentration in the river waters tested, which reflects the concentration of planktonic microorganisms, increases with increasing DOC. Further research into this is required. The microbial diversities of planktonic microorganism and biofilm calculated based on the composition of all quinones were in the range from 4.2 to 7.5, which was lower than those for activated sludge(ranging from 11 to 14.8) and soils(ranging from 13.4 to 16.8). The use of quinone profile appears to be a useful tool for the analysis of microbial community structure in river.