The Knowledge service system needs to infer a new knowledge from indicated knowledge to provide its effective service. Most of the Knowledge service system is expressed in terms of ontology. The volume of knowledge information in a real world is getting massive, so effective technique for massive data of ontology is drawing attention. This paper is to provide the method to infer massive data-ontology to the extent of RDFS, based on cloud computing environment, and evaluate its capability. RDFS inference suggested in this paper is focused on both the method applying MapReduce based on RDFS meta table, and the method of single use of cloud computing memory without using MapReduce under distributed file computing environment. Therefore, this paper explains basically the inference system structure of each technique, the meta table set-up according to RDFS inference rule, and the algorithm of inference strategy. In order to evaluate suggested method in this paper, we perform experiment with LUBM set which is formal data to evaluate ontology inference and search speed. In case LUBM6000, the RDFS inference technique based on meta table had required 13.75 minutes(inferring 1,042 triples per second) to conduct total inference, whereas the method applying the cloud computing memory had needed 7.24 minutes(inferring 1,979 triples per second) showing its speed twice faster.
Data mining plays an important role in knowledge discovery process and usually various existing algorithms are selected for the specific purpose of the mining. Currently, data mining techniques are actively to the statistics, business, electronic commerce, biology, and medical area and currently numerous algorithms are being researched and developed for these applications. However, in a long run, only a few algorithms, which are well-suited to specific applications with excellent performance in large database, will survive. So it is reasonable to focus our effort on those selected algorithms in the future. This paper classifies about 30 existing algorithms into 7 categories - association rule, clustering, neural network, decision tree, genetic algorithm, memory-based reasoning, and bayesian network. First of all, this work analyzes systematic hierarchy and characteristics of algorithms and we present 14 criteria for classifying the algorithms and the results based on this criteria. Finally, we propose the best algorithms among some comparable algorithms with different features and performances. The result of this paper can be used as a guideline for data mining researches as well as field applications of data mining.
One of the popular methods used for pattern classification is the MBR (Memory-Based Reasoning) algorithm. Since it simply computes distances between a test pattern and training patterns or hyperplanes stored in memory, and then assigns the class of the nearest training pattern, it cannot explain how the classification result is obtained. In order to overcome this problem, we propose an incremental teaming algorithm based on RPA (Recursive Partition Averaging) to extract IF-THEN rules that describe regularities inherent in training patterns. But rules generated by RPA eventually show an overfitting phenomenon, because they depend too strongly on the details of given training patterns. Also RPA produces more number of rules than necessary, due to over-partitioning of the pattern space. Consequently, we present the IREA (Incremental Rule Extraction Algorithm) that overcomes overfitting problem by removing useless conditions from rules and reduces the number of rules at the same time. We verify the performance of proposed algorithm using benchmark data sets from UCI Machine Learning Repository.
사례기반추론(Case-Based Reasoning , CBR)은 새로운 문제가 주어질 때 과거의 유사한 문제 해결 사례를 기반으로 그 해법을 적절히 변용함으로써 새로운 문제에 적합한 해결책을 효율적으로 도출하고자 하는 문제 해결 접근 방법이다. 사례기반설계는 사례기반추론을 설계에 응용한 방법으로 유사한 요구 조건하에서 설계된 과거사례를 설계에 참고 및 활용하는 방법으로 선박개념설계 등 여러 분야에서 활용하고 있다. 이러한 사례기반설계기법을 이용하여 효율적으로 고품질의 설계를 도출하기 위해서는 설계하고자 하는 대상의 설계상의 요구조건과 부합되는 사례를 적절히 선정해야 하고, 선정된 사례와 현 설계조건과의 차이점을 명확하게 인지하여 현 상황에 맞게 변용할 수 있어야 한다. 본 논문에서는 과거 사례 선정 기록을 활용하여 그 선정 경향을 기억기반학습기법을 이용하여 학습함으로써 새로운 설계 시 적절한 사례를 선정하는 인덱싱 기법을 제시한다. 사례기반설계의 전형적인 예인 선박개념설계에서 설계 시 참조용도로 사용할 실적선을 선정하는 문제에 적용하여 실험에 본 결과 decision tree 나 간단한 휴리스틱을 적용하여 참조사례를 제시한 방법에 비해 본 논문에서 제시하는 기억기반학습을 적용한 방법이 우수함을 확인하였다.
In recent years, there has been a growing interest in RDFS Inference to build a rich knowledge base. However, it is difficult to improve the inference performance with large data by using a single machine. Therefore, researchers are investigating the development of a RDFS inference engine for a distributed computing environment. However, the existing inference engines cannot process data in real-time, are difficult to implement, and are vulnerable to repetitive tasks. In order to overcome these problems, we propose a method to construct an in-memory distributed inference engine that uses a parallel graph structure. In general, the ontology based on a triple structure possesses a graph structure. Thus, it is intuitive to design a graph structure-based inference engine. Moreover, the RDFS inference rule can be implemented by utilizing the operator of the graph structure, and we can thus design the inference engine according to the graph structure, and not the structure of the data table. In this study, we evaluate the proposed inference engine by using the LUBM1000 and LUBM3000 data to test the speed of the inference. The results of our experiment indicate that the proposed in-memory distributed inference engine achieved a performance of about 10 times faster than an in-storage inference engine.
Park, Mi-Suk;Son, Seon-Ju;Park, Ji-Eun;Eum, Yeong-Ji;Kim, Suk-Hui;Yu, In-Gyu;Son, Jin-Hun
Proceedings of the Korean Society for Emotion and Sensibility Conference
/
2009.05a
/
pp.101-104
/
2009
This study investigated compensatory mechanisms in the brain during a verbal working memory task among people with Alcohol Use Disorders (AUD). A total of 21 college male students participated in the study: eleven AUD participants and 10 normal controls. Study participants were asked to complete the Korean version of the Wechsler Adult Intelligence Scale-III (K-WAIS-III) prior to the fMRI experiment. Verbal 0-back and 2-back tasks were used to assess brain activities of the participants' verbal working memory. Brain scanning was performed on Siemens SONATA 1.5T Scanner while participants were performing the 0-back and 2-back tasks. Within the AUD group, participants with greater dependency to alcohol (based on DSM-IV criteria) in the past 1 year showed lower mean score on the 'Similarities' of the K-WAIS-III (r=-0.63, p<0.05, N=11). The more participants experienced alcohol withdrawal symptoms in the past 1 year, the lower the score they received on the K-WAIS-III 'Picture Arrangement' (r=-0.69, p<0.05, n=11). The fMRI regression results showed that individuals who present greater degree of alcohol dependency symptoms are likely to show greater brain activation in the bilateral middle frontal gyri (BA 9) during the verbal working memory task. The degree of alcohol withdrawal symptoms were associated with increased brain activation in the left superior and middle frontal gyri (BA8), left precentral gyrus (BA 6), and left inferior parietal lobule (BA 40). The study findings showed that the degree of alcohol abuse/dependence and withdrawal symptoms were associated with decreased cognitive function and increased activations in brain regions particularly important for abstract reasoning (BA 9), central executive (BA 9), or spatial storage (BA 40) during a working memory task. Therefore, these results could support previous studies suggesting that the neural system of people with ADD may adopt a brain compensatory mechanism to maintain normal level of cognitive functions.
K-NN (k-Nearest Neighbors), which is a well-known instance-based learning algorithm, simply stores entire training patterns in memory, and uses a distance function to classify a test pattern. K-NN is proven to show satisfactory performance, but it is notorious formemory usage and lengthy computation. Various studies have been found in the literature in order to minimize memory usage and computation time, and NGE (Nested Generalized Exemplar) theory is one of them. In this paper, we propose RPA (Recursive Partition Averaging) and IRPA (Incremental RPA) which is an incremental version of RPA. RPA partitions the entire pattern space recursively, and generates representatives from each partition. Also, due to the fact that RPA is prone to produce excessive number of partitions as the number of features in a pattern increases, we present IRPA which reduces the number of representative patterns by processing the training set in an incremental manner. Our proposed methods have been successfully shown to exhibit comparable performance to k-NN with a lot less number of patterns and better result than EACH system which implements the NGE theory.
Mathematics learning disabilities is a specific learning disorder affecting the normal acquisition of arithmetic and spatial skills. Reported prevalence rates range from 5 to 10 percent and show high rates of comorbid disabilities, such as dyslexia and ADHD. In this study, the characteristics and the causes of this disorder has been examined. The core cause of mathematics learning disabilities is not clear yet: it can come from general cognitive problems, or disorder of innate intuitive number module could be the cause. Recently, researchers try to subdivide mathematics learning disabilities as (1) semantic/memory type, (2) procedural/skill type, (3) visuospatial type, and (4) reasoning type. Each subtype is related to specific brain areas subserving mathematical cognition. Based on these findings, the author has performed a basic research to develop grade specific diagnostic tests: number processing test and math word problems for lower grades and comprehensive math knowledge tests for the upper grades. The results should help teachers to find out prior knowledge, specific weaknesses of students, and plan personalized intervention program. The author suggest diagnostic tests are organized into 6 components. They are number sense, conceptual knowledge, arithmetic facts retrieval, procedural skills, mathematical reasoning/word problem solving, and visuospatial perception tests. This grouping will also help the examiner to figure out the processing time for each component.
Journal of the Korean Institute of Intelligent Systems
/
v.13
no.3
/
pp.328-333
/
2003
NGE (Nested Generalized Exemplars) proposed by Salzberg improved the storage requirement and classification rate of the Memory Based Reasoning. It constructs hyperrectangles during training and performs classification tasks. It worked not bad in many area, however, the major drawback of NGE is constructing hyperrectangles because its hyperrectangle is extended so as to cover the error data and the way of maintaining the feature weight vector. We proposed the OH (Optimizing Hyperrectangle) algorithm which use the feature weight vectors and the ED(Exemplar Densimeter) to optimize resulting Hyperrectangles. The proposed algorithm, as well as the EACH, required only approximately 40% of memory space that is needed in k-NN classifier, and showed a superior classification performance to the EACH. Also, by reducing the number of stored patterns, it showed excellent results in terms of classification when we compare it to the k-NN and the EACH.
Creative writing process begins with memory that contains general experience of the human. In the past creative writing was regarded as exclusive ability of the human. But today, thanks to digital technology digital story creation programs are being developed. This study compares and analyzes the story creation programs, the and the , that imitate a process of interaction between human's long term memory and creative writing. The tried to create probable story by emphasizing character's goal in building case database and retrieving cases. On the other hand, the tried to assist writer's ideation by emphasizing violating motif in building case database and retrieving cases. Hereafter, use of digital media in creating story is expected to accelerate. In this prospect, this study hope to help a development of story creation program in the future.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.