• Title/Summary/Keyword: Memory-Based Reasoning

Search Result 63, Processing Time 0.04 seconds

Distributed Table Join for Scalable RDFS Reasoning on Cloud Computing Environment (클라우드 컴퓨팅 환경에서의 대용량 RDFS 추론을 위한 분산 테이블 조인 기법)

  • Lee, Wan-Gon;Kim, Je-Min;Park, Young-Tack
    • Journal of KIISE
    • /
    • v.41 no.9
    • /
    • pp.674-685
    • /
    • 2014
  • The Knowledge service system needs to infer a new knowledge from indicated knowledge to provide its effective service. Most of the Knowledge service system is expressed in terms of ontology. The volume of knowledge information in a real world is getting massive, so effective technique for massive data of ontology is drawing attention. This paper is to provide the method to infer massive data-ontology to the extent of RDFS, based on cloud computing environment, and evaluate its capability. RDFS inference suggested in this paper is focused on both the method applying MapReduce based on RDFS meta table, and the method of single use of cloud computing memory without using MapReduce under distributed file computing environment. Therefore, this paper explains basically the inference system structure of each technique, the meta table set-up according to RDFS inference rule, and the algorithm of inference strategy. In order to evaluate suggested method in this paper, we perform experiment with LUBM set which is formal data to evaluate ontology inference and search speed. In case LUBM6000, the RDFS inference technique based on meta table had required 13.75 minutes(inferring 1,042 triples per second) to conduct total inference, whereas the method applying the cloud computing memory had needed 7.24 minutes(inferring 1,979 triples per second) showing its speed twice faster.

Classification and Analysis of Data Mining Algorithms (데이터마이닝 알고리즘의 분류 및 분석)

  • Lee, Jung-Won;Kim, Ho-Sook;Choi, Ji-Young;Kim, Hyon-Hee;Yong, Hwan-Seung;Lee, Sang-Ho;Park, Seung-Soo
    • Journal of KIISE:Databases
    • /
    • v.28 no.3
    • /
    • pp.279-300
    • /
    • 2001
  • Data mining plays an important role in knowledge discovery process and usually various existing algorithms are selected for the specific purpose of the mining. Currently, data mining techniques are actively to the statistics, business, electronic commerce, biology, and medical area and currently numerous algorithms are being researched and developed for these applications. However, in a long run, only a few algorithms, which are well-suited to specific applications with excellent performance in large database, will survive. So it is reasonable to focus our effort on those selected algorithms in the future. This paper classifies about 30 existing algorithms into 7 categories - association rule, clustering, neural network, decision tree, genetic algorithm, memory-based reasoning, and bayesian network. First of all, this work analyzes systematic hierarchy and characteristics of algorithms and we present 14 criteria for classifying the algorithms and the results based on this criteria. Finally, we propose the best algorithms among some comparable algorithms with different features and performances. The result of this paper can be used as a guideline for data mining researches as well as field applications of data mining.

  • PDF

An Incremental Rule Extraction Algorithm Based on Recursive Partition Averaging (재귀적 분할 평균에 기반한 점진적 규칙 추출 알고리즘)

  • Han, Jin-Chul;Kim, Sang-Kwi;Yoon, Chung-Hwa
    • Journal of KIISE:Software and Applications
    • /
    • v.34 no.1
    • /
    • pp.11-17
    • /
    • 2007
  • One of the popular methods used for pattern classification is the MBR (Memory-Based Reasoning) algorithm. Since it simply computes distances between a test pattern and training patterns or hyperplanes stored in memory, and then assigns the class of the nearest training pattern, it cannot explain how the classification result is obtained. In order to overcome this problem, we propose an incremental teaming algorithm based on RPA (Recursive Partition Averaging) to extract IF-THEN rules that describe regularities inherent in training patterns. But rules generated by RPA eventually show an overfitting phenomenon, because they depend too strongly on the details of given training patterns. Also RPA produces more number of rules than necessary, due to over-partitioning of the pattern space. Consequently, we present the IREA (Incremental Rule Extraction Algorithm) that overcomes overfitting problem by removing useless conditions from rules and reduces the number of rules at the same time. We verify the performance of proposed algorithm using benchmark data sets from UCI Machine Learning Repository.

Indexing Scheme for Case-Based Designs using Memory-Based Learning (기억기반학습을 이용한 사례기반설계시 참조사례의 인덱싱)

  • Gang, Jae-Ho;Ryu, Gwang-Ryeol;Lee, Dong-Gon
    • Journal of KIISE:Computing Practices and Letters
    • /
    • v.5 no.1
    • /
    • pp.79-87
    • /
    • 1999
  • 사례기반추론(Case-Based Reasoning , CBR)은 새로운 문제가 주어질 때 과거의 유사한 문제 해결 사례를 기반으로 그 해법을 적절히 변용함으로써 새로운 문제에 적합한 해결책을 효율적으로 도출하고자 하는 문제 해결 접근 방법이다. 사례기반설계는 사례기반추론을 설계에 응용한 방법으로 유사한 요구 조건하에서 설계된 과거사례를 설계에 참고 및 활용하는 방법으로 선박개념설계 등 여러 분야에서 활용하고 있다. 이러한 사례기반설계기법을 이용하여 효율적으로 고품질의 설계를 도출하기 위해서는 설계하고자 하는 대상의 설계상의 요구조건과 부합되는 사례를 적절히 선정해야 하고, 선정된 사례와 현 설계조건과의 차이점을 명확하게 인지하여 현 상황에 맞게 변용할 수 있어야 한다. 본 논문에서는 과거 사례 선정 기록을 활용하여 그 선정 경향을 기억기반학습기법을 이용하여 학습함으로써 새로운 설계 시 적절한 사례를 선정하는 인덱싱 기법을 제시한다. 사례기반설계의 전형적인 예인 선박개념설계에서 설계 시 참조용도로 사용할 실적선을 선정하는 문제에 적용하여 실험에 본 결과 decision tree 나 간단한 휴리스틱을 적용하여 참조사례를 제시한 방법에 비해 본 논문에서 제시하는 기억기반학습을 적용한 방법이 우수함을 확인하였다.

Scalable RDFS Reasoning Using the Graph Structure of In-Memory based Parallel Computing (인메모리 기반 병렬 컴퓨팅 그래프 구조를 이용한 대용량 RDFS 추론)

  • Jeon, MyungJoong;So, ChiSeoung;Jagvaral, Batselem;Kim, KangPil;Kim, Jin;Hong, JinYoung;Park, YoungTack
    • Journal of KIISE
    • /
    • v.42 no.8
    • /
    • pp.998-1009
    • /
    • 2015
  • In recent years, there has been a growing interest in RDFS Inference to build a rich knowledge base. However, it is difficult to improve the inference performance with large data by using a single machine. Therefore, researchers are investigating the development of a RDFS inference engine for a distributed computing environment. However, the existing inference engines cannot process data in real-time, are difficult to implement, and are vulnerable to repetitive tasks. In order to overcome these problems, we propose a method to construct an in-memory distributed inference engine that uses a parallel graph structure. In general, the ontology based on a triple structure possesses a graph structure. Thus, it is intuitive to design a graph structure-based inference engine. Moreover, the RDFS inference rule can be implemented by utilizing the operator of the graph structure, and we can thus design the inference engine according to the graph structure, and not the structure of the data table. In this study, we evaluate the proposed inference engine by using the LUBM1000 and LUBM3000 data to test the speed of the inference. The results of our experiment indicate that the proposed in-memory distributed inference engine achieved a performance of about 10 times faster than an in-storage inference engine.

fMRI evidence of compensatory mechanisms during a verbal working memory task in individuals with alcohol use disorders (알코올 사용 장애자의 언어 작업 기억과 관련된 뇌의 보상 기전: fMRI 연구)

  • Park, Mi-Suk;Son, Seon-Ju;Park, Ji-Eun;Eum, Yeong-Ji;Kim, Suk-Hui;Yu, In-Gyu;Son, Jin-Hun
    • Proceedings of the Korean Society for Emotion and Sensibility Conference
    • /
    • 2009.05a
    • /
    • pp.101-104
    • /
    • 2009
  • This study investigated compensatory mechanisms in the brain during a verbal working memory task among people with Alcohol Use Disorders (AUD). A total of 21 college male students participated in the study: eleven AUD participants and 10 normal controls. Study participants were asked to complete the Korean version of the Wechsler Adult Intelligence Scale-III (K-WAIS-III) prior to the fMRI experiment. Verbal 0-back and 2-back tasks were used to assess brain activities of the participants' verbal working memory. Brain scanning was performed on Siemens SONATA 1.5T Scanner while participants were performing the 0-back and 2-back tasks. Within the AUD group, participants with greater dependency to alcohol (based on DSM-IV criteria) in the past 1 year showed lower mean score on the 'Similarities' of the K-WAIS-III (r=-0.63, p<0.05, N=11). The more participants experienced alcohol withdrawal symptoms in the past 1 year, the lower the score they received on the K-WAIS-III 'Picture Arrangement' (r=-0.69, p<0.05, n=11). The fMRI regression results showed that individuals who present greater degree of alcohol dependency symptoms are likely to show greater brain activation in the bilateral middle frontal gyri (BA 9) during the verbal working memory task. The degree of alcohol withdrawal symptoms were associated with increased brain activation in the left superior and middle frontal gyri (BA8), left precentral gyrus (BA 6), and left inferior parietal lobule (BA 40). The study findings showed that the degree of alcohol abuse/dependence and withdrawal symptoms were associated with decreased cognitive function and increased activations in brain regions particularly important for abstract reasoning (BA 9), central executive (BA 9), or spatial storage (BA 40) during a working memory task. Therefore, these results could support previous studies suggesting that the neural system of people with ADD may adopt a brain compensatory mechanism to maintain normal level of cognitive functions.

  • PDF

A New Incremental Instance-Based Learning Using Recursive Partitioning (재귀분할을 이용한 새로운 점진적 인스턴스 기반 학습기법)

  • Han Jin-Chul;Kim Sang-Kwi;Yoon Chung-Hwa
    • The KIPS Transactions:PartB
    • /
    • v.13B no.2 s.105
    • /
    • pp.127-132
    • /
    • 2006
  • K-NN (k-Nearest Neighbors), which is a well-known instance-based learning algorithm, simply stores entire training patterns in memory, and uses a distance function to classify a test pattern. K-NN is proven to show satisfactory performance, but it is notorious formemory usage and lengthy computation. Various studies have been found in the literature in order to minimize memory usage and computation time, and NGE (Nested Generalized Exemplar) theory is one of them. In this paper, we propose RPA (Recursive Partition Averaging) and IRPA (Incremental RPA) which is an incremental version of RPA. RPA partitions the entire pattern space recursively, and generates representatives from each partition. Also, due to the fact that RPA is prone to produce excessive number of partitions as the number of features in a pattern increases, we present IRPA which reduces the number of representative patterns by processing the training set in an incremental manner. Our proposed methods have been successfully shown to exhibit comparable performance to k-NN with a lot less number of patterns and better result than EACH system which implements the NGE theory.

Neuropsychological Approaches to Mathematical Learning Disabilities and Research on the Development of Diagnostic Test (신경심리학적 이론에 근거한 수학학습장애의 유형분류 및 심층진단검사의 개발을 위한 기초연구)

  • Kim, Yon-Mi
    • Education of Primary School Mathematics
    • /
    • v.14 no.3
    • /
    • pp.237-259
    • /
    • 2011
  • Mathematics learning disabilities is a specific learning disorder affecting the normal acquisition of arithmetic and spatial skills. Reported prevalence rates range from 5 to 10 percent and show high rates of comorbid disabilities, such as dyslexia and ADHD. In this study, the characteristics and the causes of this disorder has been examined. The core cause of mathematics learning disabilities is not clear yet: it can come from general cognitive problems, or disorder of innate intuitive number module could be the cause. Recently, researchers try to subdivide mathematics learning disabilities as (1) semantic/memory type, (2) procedural/skill type, (3) visuospatial type, and (4) reasoning type. Each subtype is related to specific brain areas subserving mathematical cognition. Based on these findings, the author has performed a basic research to develop grade specific diagnostic tests: number processing test and math word problems for lower grades and comprehensive math knowledge tests for the upper grades. The results should help teachers to find out prior knowledge, specific weaknesses of students, and plan personalized intervention program. The author suggest diagnostic tests are organized into 6 components. They are number sense, conceptual knowledge, arithmetic facts retrieval, procedural skills, mathematical reasoning/word problem solving, and visuospatial perception tests. This grouping will also help the examiner to figure out the processing time for each component.

An Optimizing Hyperrectangle method for Nearest Hyperrectangle Learning (초월평면 최적화를 이용한 최근접 초월평면 학습법의 성능 향상 방법)

  • Lee, Hyeong-Il
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.13 no.3
    • /
    • pp.328-333
    • /
    • 2003
  • NGE (Nested Generalized Exemplars) proposed by Salzberg improved the storage requirement and classification rate of the Memory Based Reasoning. It constructs hyperrectangles during training and performs classification tasks. It worked not bad in many area, however, the major drawback of NGE is constructing hyperrectangles because its hyperrectangle is extended so as to cover the error data and the way of maintaining the feature weight vector. We proposed the OH (Optimizing Hyperrectangle) algorithm which use the feature weight vectors and the ED(Exemplar Densimeter) to optimize resulting Hyperrectangles. The proposed algorithm, as well as the EACH, required only approximately 40% of memory space that is needed in k-NN classifier, and showed a superior classification performance to the EACH. Also, by reducing the number of stored patterns, it showed excellent results in terms of classification when we compare it to the k-NN and the EACH.

A Comparative Study on the CBR Model of Story Creation Program : focusing on the and the (디지털 서사 창작도구의 CBR 모델 비교 연구 : <민스트럴>과 <스토리헬퍼>를 중심으로)

  • Lyou, Chul-Gyun;Yun, Hye-Young
    • Journal of Digital Contents Society
    • /
    • v.13 no.2
    • /
    • pp.213-224
    • /
    • 2012
  • Creative writing process begins with memory that contains general experience of the human. In the past creative writing was regarded as exclusive ability of the human. But today, thanks to digital technology digital story creation programs are being developed. This study compares and analyzes the story creation programs, the and the , that imitate a process of interaction between human's long term memory and creative writing. The tried to create probable story by emphasizing character's goal in building case database and retrieving cases. On the other hand, the tried to assist writer's ideation by emphasizing violating motif in building case database and retrieving cases. Hereafter, use of digital media in creating story is expected to accelerate. In this prospect, this study hope to help a development of story creation program in the future.