• Title/Summary/Keyword: Memory and Learning Training

Search Result 166, Processing Time 0.026 seconds

Research on the Utilization of Recurrent Neural Networks for Automatic Generation of Korean Definitional Sentences of Technical Terms (기술 용어에 대한 한국어 정의 문장 자동 생성을 위한 순환 신경망 모델 활용 연구)

  • Choi, Garam;Kim, Han-Gook;Kim, Kwang-Hoon;Kim, You-eil;Choi, Sung-Pil
    • Journal of the Korean Society for Library and Information Science
    • /
    • v.51 no.4
    • /
    • pp.99-120
    • /
    • 2017
  • In order to develop a semiautomatic support system that allows researchers concerned to efficiently analyze the technical trends for the ever-growing industry and market. This paper introduces a couple of Korean sentence generation models that can automatically generate definitional statements as well as descriptions of technical terms and concepts. The proposed models are based on a deep learning model called LSTM (Long Sort-Term Memory) capable of effectively labeling textual sequences by taking into account the contextual relations of each item in the sequences. Our models take technical terms as inputs and can generate a broad range of heterogeneous textual descriptions that explain the concept of the terms. In the experiments using large-scale training collections, we confirmed that more accurate and reasonable sentences can be generated by CHAR-CNN-LSTM model that is a word-based LSTM exploiting character embeddings based on convolutional neural networks (CNN). The results of this study can be a force for developing an extension model that can generate a set of sentences covering the same subjects, and furthermore, we can implement an artificial intelligence model that automatically creates technical literature.

KNU Korean Sentiment Lexicon: Bi-LSTM-based Method for Building a Korean Sentiment Lexicon (Bi-LSTM 기반의 한국어 감성사전 구축 방안)

  • Park, Sang-Min;Na, Chul-Won;Choi, Min-Seong;Lee, Da-Hee;On, Byung-Won
    • Journal of Intelligence and Information Systems
    • /
    • v.24 no.4
    • /
    • pp.219-240
    • /
    • 2018
  • Sentiment analysis, which is one of the text mining techniques, is a method for extracting subjective content embedded in text documents. Recently, the sentiment analysis methods have been widely used in many fields. As good examples, data-driven surveys are based on analyzing the subjectivity of text data posted by users and market researches are conducted by analyzing users' review posts to quantify users' reputation on a target product. The basic method of sentiment analysis is to use sentiment dictionary (or lexicon), a list of sentiment vocabularies with positive, neutral, or negative semantics. In general, the meaning of many sentiment words is likely to be different across domains. For example, a sentiment word, 'sad' indicates negative meaning in many fields but a movie. In order to perform accurate sentiment analysis, we need to build the sentiment dictionary for a given domain. However, such a method of building the sentiment lexicon is time-consuming and various sentiment vocabularies are not included without the use of general-purpose sentiment lexicon. In order to address this problem, several studies have been carried out to construct the sentiment lexicon suitable for a specific domain based on 'OPEN HANGUL' and 'SentiWordNet', which are general-purpose sentiment lexicons. However, OPEN HANGUL is no longer being serviced and SentiWordNet does not work well because of language difference in the process of converting Korean word into English word. There are restrictions on the use of such general-purpose sentiment lexicons as seed data for building the sentiment lexicon for a specific domain. In this article, we construct 'KNU Korean Sentiment Lexicon (KNU-KSL)', a new general-purpose Korean sentiment dictionary that is more advanced than existing general-purpose lexicons. The proposed dictionary, which is a list of domain-independent sentiment words such as 'thank you', 'worthy', and 'impressed', is built to quickly construct the sentiment dictionary for a target domain. Especially, it constructs sentiment vocabularies by analyzing the glosses contained in Standard Korean Language Dictionary (SKLD) by the following procedures: First, we propose a sentiment classification model based on Bidirectional Long Short-Term Memory (Bi-LSTM). Second, the proposed deep learning model automatically classifies each of glosses to either positive or negative meaning. Third, positive words and phrases are extracted from the glosses classified as positive meaning, while negative words and phrases are extracted from the glosses classified as negative meaning. Our experimental results show that the average accuracy of the proposed sentiment classification model is up to 89.45%. In addition, the sentiment dictionary is more extended using various external sources including SentiWordNet, SenticNet, Emotional Verbs, and Sentiment Lexicon 0603. Furthermore, we add sentiment information about frequently used coined words and emoticons that are used mainly on the Web. The KNU-KSL contains a total of 14,843 sentiment vocabularies, each of which is one of 1-grams, 2-grams, phrases, and sentence patterns. Unlike existing sentiment dictionaries, it is composed of words that are not affected by particular domains. The recent trend on sentiment analysis is to use deep learning technique without sentiment dictionaries. The importance of developing sentiment dictionaries is declined gradually. However, one of recent studies shows that the words in the sentiment dictionary can be used as features of deep learning models, resulting in the sentiment analysis performed with higher accuracy (Teng, Z., 2016). This result indicates that the sentiment dictionary is used not only for sentiment analysis but also as features of deep learning models for improving accuracy. The proposed dictionary can be used as a basic data for constructing the sentiment lexicon of a particular domain and as features of deep learning models. It is also useful to automatically and quickly build large training sets for deep learning models.

Way to the Method of Teaching Korean Speculative Expression Using Visual Thinking : Focusing on '-(으)ㄹ 것 같다', '-나 보다' (비주얼 씽킹을 활용한 한국어 추측 표현 교육 방안 : '-(으)ㄹ 것 같다', '-나 보다'를 대상으로)

  • Lee, Eun-Kyoung;Bak, Jong-Ho
    • Journal of Korea Entertainment Industry Association
    • /
    • v.15 no.5
    • /
    • pp.141-151
    • /
    • 2021
  • This study analyzed the meaning and functions of '-(으)ㄹ 것 같다' and '-나 보다' among the various semantic functions depending on the situation, and discussed ways to train speculative expressions more efficiently by expanding them from traditional teaching methods through visualizations applied visual thinking at real Korean language education. The speculative representation, which is the subject of this study, represents the speaker's speculation about something or situation, with slight differences in meaning depending on the basis of the speculation and the subject of the speculation. We propose a training method that can enhance the diversification and efficiency of teaching-learning through visualization of information or knowledge, speculative representations that exhibit fine semantic differences in various situations. Utilizing visual thinking in language education can simplify and provide language information through visualization of language knowledge, and learners can be efficient at organizing and organizing language knowledge. It also has the advantage of long-term memory of language information through visualization of language knowledge. Attempts of various educational methods that can be applied at the Korean language education site can contribute to establishing a more systematic and efficient education method, which is meaningful in that the visual thinking proposed in this study can give interest and efficiency to international students.

The Generating Processes of Scientific Emotion in the Generation of Biological Hypotheses (생물학 가설의 생성에서 나타난 과학적 감성의 생성 과정)

  • Kwon, Yong-Ju;Shin, Dong-Hoon;Park, Ji-Young
    • Journal of The Korean Association For Science Education
    • /
    • v.25 no.4
    • /
    • pp.503-513
    • /
    • 2005
  • The purpose of this study was to analyze the generating processes of scientific emotion, that appears during the generation of biological hypotheses. To perform the study, a tentative model was set up through pilot test, a think-aloud training procedure was planned and a standardized interview instrument was developed before getting protocols. In this study, 8 college students were selected to bring out protocol through the method of think-aloud, retrospective debriefing, focused interview and observing. As the result of analysis of the collected protocol through coding scheme, 4 types of process for scientific emotion-generating were sorted out. First type was a basic process which was a feeling process in prior to recognition. Second type was a retrospective process that explains the process of retrospect for emotional memory based on the past. Third type was a cognitive process and it explains emotion that occurs during thinking process to achieve cognitive goal. Fourth type was an attribution process and it explains that emotion is generated in the process of attribution for cognitive goal's achievement. These types of process of scientific emotion-generating can contribute the basis for developing cognitive model of EBL (Emotional Brain-based Learning) strategy.

Automatic gasometer reading system using selective optical character recognition (관심 문자열 인식 기술을 이용한 가스계량기 자동 검침 시스템)

  • Lee, Kyohyuk;Kim, Taeyeon;Kim, Wooju
    • Journal of Intelligence and Information Systems
    • /
    • v.26 no.2
    • /
    • pp.1-25
    • /
    • 2020
  • In this paper, we suggest an application system architecture which provides accurate, fast and efficient automatic gasometer reading function. The system captures gasometer image using mobile device camera, transmits the image to a cloud server on top of private LTE network, and analyzes the image to extract character information of device ID and gas usage amount by selective optical character recognition based on deep learning technology. In general, there are many types of character in an image and optical character recognition technology extracts all character information in an image. But some applications need to ignore non-of-interest types of character and only have to focus on some specific types of characters. For an example of the application, automatic gasometer reading system only need to extract device ID and gas usage amount character information from gasometer images to send bill to users. Non-of-interest character strings, such as device type, manufacturer, manufacturing date, specification and etc., are not valuable information to the application. Thus, the application have to analyze point of interest region and specific types of characters to extract valuable information only. We adopted CNN (Convolutional Neural Network) based object detection and CRNN (Convolutional Recurrent Neural Network) technology for selective optical character recognition which only analyze point of interest region for selective character information extraction. We build up 3 neural networks for the application system. The first is a convolutional neural network which detects point of interest region of gas usage amount and device ID information character strings, the second is another convolutional neural network which transforms spatial information of point of interest region to spatial sequential feature vectors, and the third is bi-directional long short term memory network which converts spatial sequential information to character strings using time-series analysis mapping from feature vectors to character strings. In this research, point of interest character strings are device ID and gas usage amount. Device ID consists of 12 arabic character strings and gas usage amount consists of 4 ~ 5 arabic character strings. All system components are implemented in Amazon Web Service Cloud with Intel Zeon E5-2686 v4 CPU and NVidia TESLA V100 GPU. The system architecture adopts master-lave processing structure for efficient and fast parallel processing coping with about 700,000 requests per day. Mobile device captures gasometer image and transmits to master process in AWS cloud. Master process runs on Intel Zeon CPU and pushes reading request from mobile device to an input queue with FIFO (First In First Out) structure. Slave process consists of 3 types of deep neural networks which conduct character recognition process and runs on NVidia GPU module. Slave process is always polling the input queue to get recognition request. If there are some requests from master process in the input queue, slave process converts the image in the input queue to device ID character string, gas usage amount character string and position information of the strings, returns the information to output queue, and switch to idle mode to poll the input queue. Master process gets final information form the output queue and delivers the information to the mobile device. We used total 27,120 gasometer images for training, validation and testing of 3 types of deep neural network. 22,985 images were used for training and validation, 4,135 images were used for testing. We randomly splitted 22,985 images with 8:2 ratio for training and validation respectively for each training epoch. 4,135 test image were categorized into 5 types (Normal, noise, reflex, scale and slant). Normal data is clean image data, noise means image with noise signal, relfex means image with light reflection in gasometer region, scale means images with small object size due to long-distance capturing and slant means images which is not horizontally flat. Final character string recognition accuracies for device ID and gas usage amount of normal data are 0.960 and 0.864 respectively.

Functional recovery after transplantation of mouse bone marrow-derived mesenchymal stem cells for hypoxic-ischemic brain injury in immature rats (저산소 허혈 뇌 손상을 유발시킨 미성숙 흰쥐에서 마우스 골수 기원 중간엽 줄기 세포 이식 후 기능 회복)

  • Choi, Wooksun;Shin, Hye Kyung;Eun, So-Hee;Kang, Hoon Chul;Park, Sung Won;Yoo, Kee Hwan;Hong, Young Sook;Lee, Joo Won;Eun, Baik-Lin
    • Clinical and Experimental Pediatrics
    • /
    • v.52 no.7
    • /
    • pp.824-831
    • /
    • 2009
  • Purpose : We aimed to investigate the efficacy of and functional recovery after intracerebral transplantation of different doses of mouse mesenchymal stem cells (mMSCs) in immature rat brain with hypoxic-ischemic encephalopathy (HIE). Methods : Postnatal 7-days-old Sprague-Dawley rats, which had undergone unilateral HI operation, were given stereotaxic intracerebral injections of either vehicle or mMSCs and then tested for locomotory activity in the 2nd, 4th, 6th, and 8th week of the stem cell injection. In the 8th week, Morris water maze test was performed to evaluate the learning and memory dysfunction for a week. Results : In the open field test, no differences were observed in the total distance/the total duration (F=0.412, P=0.745) among the 4 study groups. In the invisible-platform Morris water maze test, significant differences were observed in escape latency (F=380.319, P<0.01) among the 4 groups. The escape latency in the control group significantly differed from that in the high-dose mMSC and/or sham group on training days 2-5 (Scheffe's test, P<0.05) and became prominent with time progression (F=6.034, P<0.01). In spatial probe trial and visible-platform Morris water maze test, no significant improvement was observed in the rats that had undergone transplantation. Conclusion : Although the rats that received a high dose of mMSCs showed significant recovery in the learning-related behavioral test only, our data support that mMSCs may be used as a valuable source to improve outcome in HIE. Further study is necessary to identify the optimal dose that shows maximal efficacy for HIE treatment.