• Title/Summary/Keyword: Memory System

Search Result 3,599, Processing Time 0.036 seconds

The Design of the Shared Memory in the Dual Core System (Dual Core 시스템에서 Shared Memory 기능 설계)

  • Jang, Seung-Ju;Lee, Gwang-Yong;Kim, Jae-Myeong
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.12 no.8
    • /
    • pp.1448-1455
    • /
    • 2008
  • This paper designs Shared Memory on the Dual Core system so that it operates a general System V IPC on the Linux O.S. Shared Memory is the technique that many processes can access to identical memory area. We treat Shared Memory in this paper among big two branches of Shared Memory which are SVR in a kernel step format. We design a share memory facility of Linux operating system on the Dual Core System. In this paper the suggesting design plan of share memory facility in Dual Core system is enhancing the performance in existing unity processor system as a dual core practical use. We attempt a performance enhance in each CPU for each process which uses a share memory.

Implementation of the Shared Memory in the Dual Core System (Dual Core 시스템에서 Shared Memory 기능 구현)

  • Jang, Seung-Ju
    • The Journal of the Korea Contents Association
    • /
    • v.8 no.9
    • /
    • pp.27-33
    • /
    • 2008
  • This paper designs Shared Memory on the Dual Core system so that it operates a general System V IPC on the Linux O.S. Shared Memory is the technique that many processes can access to identical memory area. We treat Shared Memory which is SVR in a kernel step. We design a share memory facility of Linux operating system on the Dual Core System. In this paper the suggesting of share memory facility design plan in Dual Core system is enhance the performance in existing an unity processor system as a dual core practical use. We attemp a performance enhance in each CPU for each process which uses a share memory.

Regular File Access of Embedded System Using Flash Memory as a Storage (플래시 메모리를 저장매체로 사용하는 임베디드 시스템에서의 정규파일 접근)

  • 이은주;박현주
    • Journal of Information Technology Applications and Management
    • /
    • v.11 no.1
    • /
    • pp.189-200
    • /
    • 2004
  • Recently Flash Memory which is small and low-powered is widely used as a storage of embedded system, because an embedded system requests portability and a fast response. To resolve a difference of access time between a storage and RAM, Linux is using disk caching which copies a part of file on disk into RAM. It is not also an exception on embedded system. A READ access-time of flash memory is similar to RAMs. So, when a process on an embedded system reads data, it is similar to the time to access cached data in RAM and to access directly data on a flash memory. On the embedded system using limited memory, using a disk cache is that wastes much time and memory spaces to manage it and can not reflects the characteristic of a flash memory. This paper proposes the regular file access of limited using a page cache in the file system based on a flash memory and reflects the characteristic of a flash memory. The proposed algorithm minimizes power consumption because access numbers of the RAM are reduced and doesn't waste a memory space because it accesses directly to a flash memory Therefore, the performance improvement of the system applying the proposed algorithm is expected.

  • PDF

Design of Memory-Resident GIS Database Systems

  • Lee, J. H.;Nam, K.W.;Lee, S.H.;Park, J.H.
    • Proceedings of the KSRS Conference
    • /
    • 2003.11a
    • /
    • pp.499-501
    • /
    • 2003
  • As semiconductor memory becomes cheaper, the memory capacity of computer system is increasing. Therefore computer system has sufficient memory for a plentiful spatial data. With emerging spatial application required high performance, this paper presents a GIS database system in main memory. Memory residence can provide both functionality and performance for a database management system. This paper describes design of DBMS for storing, querying, managing and analyzing for spatial and non-spatial data in main-memory. This memory resident GIS DBMS supports SQL for spatial query, spatial data model, spatial index and interface for GIS tool or applications.

  • PDF

A Technique to Enhance Performance of Log-based Flash Memory File Systems (로그기반 플래시 메모리 파일 시스템 성능 향상 기법)

  • Ryu, Junkil;Park, Chanik
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.2 no.3
    • /
    • pp.184-193
    • /
    • 2007
  • Flash memory adoption in the mobile devices is increasing or vanous multimedia services such as audio, videos, and games. Although the traditional research issues such as out-place update, garbage collection, and wear-leveling are important, the performance, memory usage, and fast mount issues of flash memory file system are becoming much more important than ever because flash memory capacity is rapidly increasing. In this paper, we address the problems of the existing log-based flash memory file systems analytically and propose an efficient log-based file system, which produces higher performance, less memory usage and mount time than the existing log-based file systems. Our ideas are applied to a well-known log-based flash memory file system (YAFFS2) and the performance tests are conducted by comparing our prototype with YAFFS2. The experimental results show that our prototype achieves higher performance, less system memory usage, and faster mounting than YAFFS2, which is better than JFFS2.

  • PDF

An Implementation of a Memory Operation System Architecture for Memory Latency Penalty Reduction in SIMT Based Stream Processor (Memory Latency Penalty를 개선한 SIMT 기반 Stream Processor의 Memory Operation System Architecture 설계)

  • Lee, Kwang-Yeob
    • Journal of IKEEE
    • /
    • v.18 no.3
    • /
    • pp.392-397
    • /
    • 2014
  • In this paper, we propose a memory operation system architecture for memory latency penalty reduction in SIMT architecture based stream processor. The proposed architecture applied non-blocking cache architecture to reduce cache miss penalty generated by blocking cache architecture. We verified that the proposed memory operation architecture improve the performance of the stream processor by comparing processing performances of various algorithms. We measured the performance improvement rate that was improved in accordance with the ratio of memory instruction in each algorithm. As a result, we confirmed that the performance of stream processor improves up to minimum 8.2% and maximum 46.5%.

A Design of a Flash Memory Swapping File System using LFM (LFM 기법을 이용한 플래시 메모리 스와핑 파일 시스템 설계)

  • Han, Dae-Man;Koo, Yong-Wan
    • Journal of Internet Computing and Services
    • /
    • v.6 no.4
    • /
    • pp.47-58
    • /
    • 2005
  • There are two major type of flash memory products, namely, NAND-type and NOR-type flash memory. NOR-type flash memory is generally deployed as ROM BIOS code storage because if offers Byte I/O and fast read operation. However, NOR-type flash memory is more expensive than NAND-type flash memory in terms of the cost per byte ratio, and hence NAND type flash memory is more widely used as large data storage such as embedded Linux file systems. In this paper, we designed an efficient flash memory file system based an Embedded system and presented to make up for reduced to Swapping a weak System Performance to flash file system using NAND-type flash memory, then proposed Swapping algorithm insured to an Execution time. Based on Implementation and simulation studies, Then, We improved performance bases on NAND-type flash memory to the requirement of the embedded system.

  • PDF

Implementation of Integrated CPU-GPU for Efficient Uniform Memory Access Method and Verification System (CPU-GPU간 긴밀성을 위한 효율적인 공유메모리 접근 방법과 검증 시스템 구현)

  • Park, Hyun-moon;Kwon, Jinsan;Hwang, Tae-ho;Kim, Dong-Sun
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.11 no.2
    • /
    • pp.57-65
    • /
    • 2016
  • In this paper, we propose a system for efficient use of shared memory between CPU and GPU. The system, called Fusion Architecture, assures consistency of the shared memory and minimizes cache misses that frequently occurs on Heterogeneous System Architecture or Unified Virtual Memory based systems. It also maximizes the performance for memory intensive jobs by efficient allocation of GPU cores. To test between architectures on various scenarios, we introduce the Fusion Architecture Analyzer, which compares OpenMP, OpenCL, CUDA, and the proposed architecture in terms of memory overhead and process time. As a result, Proposed fusion architectures show that the Fusion Architecture runs benchmarks 55% faster and reduces memory overheads by 220% in average.

The Study of the Implementation of the Boot System Using CF(Compact Flash) memory card 1. Implementation of the Boot System Using CF memory card (CF(Compact Flash)메모리 카드를 이용한 부트 시스템 구현에 관한 연구 1. CF메모리 카드를 이용한 부트 시스템 구현)

  • 이광철;김영길
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.8 no.1
    • /
    • pp.108-114
    • /
    • 2004
  • In this paper we propose the boot system using CF memory card and study the system implementation method. The system that is proposed in this paper basically consist of high performance microprocessor, small amount of program memory and CF memory card. And added LCD module and touch panel for the user interface. This system use the CF memory card and DRAM instead of the Flash memory, so it can reduce the system cost. And system performance is increased because of the system program running in the DRAM.

Memory Design for Artificial Intelligence

  • Cho, Doosan
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.12 no.1
    • /
    • pp.90-94
    • /
    • 2020
  • Artificial intelligence (AI) is software that learns large amounts of data and provides the desired results for certain patterns. In other words, learning a large amount of data is very important, and the role of memory in terms of computing systems is important. Massive data means wider bandwidth, and the design of the memory system that can provide it becomes even more important. Providing wide bandwidth in AI systems is also related to power consumption. AlphaGo, for example, consumes 170 kW of power using 1202 CPUs and 176 GPUs. Since more than 50% of the consumption of memory is usually used by system chips, a lot of investment is being made in memory technology for AI chips. MRAM, PRAM, ReRAM and Hybrid RAM are mainly studied. This study presents various memory technologies that are being studied in artificial intelligence chip design. Especially, MRAM and PRAM are commerciallized for the next generation memory. They have two significant advantages that are ultra low power consumption and nearly zero leakage power. This paper describes a comparative analysis of the four representative new memory technologies.