• Title/Summary/Keyword: Membranes

Search Result 3,775, Processing Time 0.047 seconds

Catalytic Membrane Reactor for Dehydrogenation of Water Via gas-Shift: A Review of the Activities for the Fusion Reactor Fuel Cycle

  • Tosti, Silvano;Rizzello, Claudio;Castelli, Stefano;Violante, Vittorio
    • Korean Membrane Journal
    • /
    • v.1 no.1
    • /
    • pp.1-7
    • /
    • 1999
  • Pd-ceramic composite membranes and catalytic membrane reactors(CMR) have been studied for hydrogen and its isotopes (deuterium and tritium) purification and recovery in the fusion reactor fuel cycle. Particularly a closed-loop process has been studied for recovering tritium from tritiated water by means of a CMR in which the water gas shift reaction takes place. The development of the techniques for coating micro-porous ceramic tubes with Pd and Pd/Ag thin layers is described : P composite membranes have been produced by electroless deposition (Pd/Ag film of 10-20 $\mu$m) and rolling of thin metal sheets (Pd and Pd/Ag membranes of 50-70 $\mu$m). Experimental results of the electroless membranes have shown a not complete hydrogen selectivity because of the presence of some defects(micro-holes) in the metallic thin layer. Conversely the rolled thin Pd and Pd/ag membranes have separated hydrogen from the other gases with a complete selectivity giving rise to a slightly larger (about a factor 1.7) mass transfer resistance with respect to the electroless membranes. Experimental tests have confirmed the good performances of the rolled membranes in terms of chemical stability over several weeks of operation. Therefore these rolled membranes and CMR are adequate for applications in the fusion reactor fuel cycle as well as in the industrial processes where high pure hydrogen is required (i.e. hydrocarbon reforming for fuel cell)

  • PDF

Preparation and Characterization of Nafion Composite Membranes Containing 1-ethyl-3-methylimidazolium Tetracyanoborate

  • Shin, Mun-Sik;Park, Jin-Soo
    • Journal of the Korean Electrochemical Society
    • /
    • v.15 no.1
    • /
    • pp.35-40
    • /
    • 2012
  • The composite membranes using Nafion as matrix and 1-ethyl-3-methylimidazolium tetracyanoborate (EMITCB) as ion-conducting medium in replacement of water were prepared and characterized. The amount of EMITCB in Nafion varied from 30 to 50wt%. The composite membranes are characterized by ion conductivity, thermogravitational analyses (TGA) and small-angle X-ray scattering (SAXS). The composite membranes containing EMITCB of 40wt% showed the maximum ionic conductivity which was ~0.0146 S $cm^{-1}$ at 423.15 K. It is inferred that the decrease in ionic conductivity of all the composite membranes might be due to the decomposition of a tetracyanoboric acid formed in the composite membranes. The results of SAXS indicated that the ionic clusters to conduct proton in the composite membranes were successfully formed. In accordance with the results of ionic conductivity as a function of a reciprocal temperature, SAXS showed a proportional decrease in scattering maximum $q_{max}$ as the amount of EMITCB increases in the composite membranes, which results in the increase in ionomer cluster size. The TGA showed no significant decomposition of the ionic liquid as well as the composite membranes in the range of operating temperature ($120-150^{\circ}C$) of high temperature proton exchange membrane fuel cells (HTPEMFC). As a result, EMITCB is able to play an important role in transferring proton in the composite membranes at elevated temperatures with no external humidification for proton exchange membrane fuel cells.

Preparation and Characterization of Sulfonated Poly(phthalazinone ether sulfone ketone) (SPPESK)/Silica Hybrid Membranes for Direct Methanol Fuel Cell Applications

  • Kim, Dae-Sik;Shin, Kwang-Ho;Park, Ho-Bum;Lee, Young-Moo
    • Macromolecular Research
    • /
    • v.12 no.4
    • /
    • pp.413-421
    • /
    • 2004
  • Sulfonated poly(phthalazinone ether sulfone ketone) (SPPESK) membranes and sol-gel derived SPPESK/silica hybrid membranes have been investigated as potential polymer electrolyte membranes for direct methanol fuel cell (DMFC) applications. In comparison with the SPPESK membrane, the SPPESK/silica membranes exhibited higher water content, improved proton conductivity, and lower methanol permeability. Notably, the silica embedded in the membrane acted as a material for reducing the fraction of free water and as a barrier for methanol transport through the membrane. From the results of proton conductivity and methanol permeability studies, we suggest that the fractions of bound and free water should be optimized to obtain desirable proton conductivities and methanol permeabilities. The highly sulfonated PPESK hybrid membrane (HSP-Si) displayed higher proton conductivity (3.42 ${\times}$ 10$^2$ S/cm) and lower methanol permeability (4.15 ${\times}$ 10$\^$7/ $\textrm{cm}^2$/s) than those of Nafion 117 (2.54 ${\times}$ 10$^2$ S/cm; 2.36 ${\times}$ 10$\^$6/ $\textrm{cm}^2$/s, respectively) at 30$^{\circ}C$. This characteristic of the SPPESK/silica membranes is desirable for future applications related to DMFCs.

Modification of ultrafiltration membranes with carbon nanotube buckypaper for fouling alleviation

  • Guo, Jin;Liu, Jian-Hong;Wang, Li-Ying;Liu, Hong
    • Membrane and Water Treatment
    • /
    • v.6 no.1
    • /
    • pp.1-13
    • /
    • 2015
  • The modification of ultrafiltration membranes with carbon nanotube (CNT) buckypaper on fouling control was investigated. Two types of commercially available flat-sheet membranes were used: PS35 and PES900C/D (PES) (the PS35 membranes were hydrophilic with a molecular weight cutoff of 20 kDa, and the PES membranes were hydrophobic with a molecular weight cutoff of 20 kDa). The CNT buckypaper modified ultrafiltration membranes were prepared by filtering a CNT suspension through the flat-sheet membrane in a dead-end ultrafiltration unit. After modification, the pure water flux of PES was significantly increased, while the pure water flux of PS35 was decreased. The properties of the CNT modified membranes were also investigated. Considering the antifouling properties, pure water flux of the modified membrane, and the stability of CNT buckypaper layer on the membrane surface, ethanol solution with a concentration of 50 wt.%, multi-walled carbon nanotubes (MWCNTs) with a larger diameter (30-50 nm), and the CNT loading with $7.5g/m^2$ was selected. The CNT buckypaper on the surface of ultrafiltration membranes can trap the pollutants in sewage effluent and prevent them reaching the surface of virgin membranes. Water quality analysis showed that the effluent quality of the modified membrane was obviously improved. The removal efficiency of humic acid and protein-like matters by the modified membrane was significant. These results indicate the potential application of the CNT buckypaper layer modified membranes in the field of wastewater reclaim.

Microfiltration/ultrafiltration polyamide-6 membranes for copper removal from aqueous solutions

  • El-Gendi, Ayman;Ali, Sahar;Abdalla, Heba;Saied, Marwa
    • Membrane and Water Treatment
    • /
    • v.7 no.1
    • /
    • pp.55-70
    • /
    • 2016
  • Microfiltration/ultrafiltration (MF/UF) Adsorptive polyamide-6 (PA-6) membranes were prepared using wet phase inversion process. The prepared PA-6 membranes are characterized by scanning electron microscopy (SEM), porosity and swelling degree. In this study, the membranes performance has examined by adsorptive removal of copper ions from aqueous solutions in a batch adsorption mode. The $PA-6/H_2O$ membranes display sponge like and highly porous structures, with porosities of 41-73%. Under the conditions examined, the adsorption experiments have showed that the $PA-6/H_2O$ membranes had a good adsorption capacity (up to 120-280 mg/g at the initial copper ion concentration ($C_0$) = 680 mg/L, pH7), fast adsorption rates and short adsorption equilibrium times (less than 1.5-2 hrs) for copper ions. The fast adsorption in this study may be attributed to the high porosities and large pore sizes of the $PA-6/H_2O$ membranes, which have facilitated the transport of copper ions to the adsorption. The results obtained from the study illustrated that the copper ions which have adsorbed on the polyamide membranes can be effectively desorbed in an Ethylene dinitrilotetra acetic acid Di sodium salt ($Na_2$ EDTA) solution from initial concentration (up to 92% desorption efficiency) and the PA-6 membranes can be reused almost without loss of the adsorption capacity for copper ions. The results obtained from the study suggested that the $PA-6/H_2O$ membranes can be effectively applied for the adsorptive removal of copper ions from aqueous solutions.

The Preparation and Electrochemical Properties of Pore-filled and Polystyrene-based Anion-exchange Membranes Using Poly(ethylene glycol)methyl Ether Methacrylate (Poly(ethylene glycol)methyl Ether Methacrylate를 이용한 세공충전 폴리스티렌계 음이온 교환막의 제조 및 전기화학적 특성)

  • Mun, Hye Jin;Choi, Jae Hak;Hong, Young Taik;Chang, Bong Jun
    • Membrane Journal
    • /
    • v.25 no.6
    • /
    • pp.515-523
    • /
    • 2015
  • While commercial polystyrene-based ion exchange membranes have simple manufacturing processes, they also possess poor durability due to their brittleness. Poly(ethylene glycol)methyl ether methacrylate with hydrophilic side chains of poly(ethylene glycol) was used as a co-monomer to make the membranes have improved flexibility. Hydrophilicity/hydrophobicity of the anion exchange membranes were able to be adjusted by varying the chain lengths of the poly(ethylene glycol). For the preparation of the anion exchange membranes, a porous PE substrate was immersed into monomer solutions and thermally polymerized. The prepared membranes were subsequently reacted with trimethylamine to produce anion exchange functional groups, Quaternary ammonium salts. The prepared pore-filled anion exchange membranes were evaluated in terms of ion exchange capacity, electric resistance, elongation at break and water uptake.

Improved cell adhesion to ion beam-irradiated biodegradable membranes (이온빔조사에 의한 생분해성 차폐막의 세포부착력 증진에 관한 연구)

  • Lee, Yong-Moo;Park, Yoon-Jeong;Lee, Seung-Jin;Ku, Young;Rhyu, In-Chul;Han, Soo-Boo;Choi, Sang-Mook;Chung, Chong-Pyoung
    • Journal of Periodontal and Implant Science
    • /
    • v.28 no.4
    • /
    • pp.601-611
    • /
    • 1998
  • Ion irradiation is a very promising tool to modify the chemical structure and physical properities of polymers. This study was aimed to evaluate the cellular adhesion to ion beam-irradiated surface of biodegradable poly-l-lactide(PLLA) membrane. The PLLA membrane samples were irradiated by using 35 KeV $Ar^+$ to fluence of $5{\times}10^{13}$, $5{\times}10^{14}$ and $5{\times}10^{15}\;ion/cm^2$. Water contact angles to control and each dose of ion beam-irradiated PLLA membranes were measured. Cultured fetal rat calvarial osteoblasts were seeded onto control and each dose of ion beam-irradiated PLLA membranes and cultured. After 24 hours, each PLLA membranes onto which osteoblasts attached were examined by scanning electron microscopy(SEM). Osteoblasts were removed from each PLLA membrane and then, the vitality and the number of cells were calibrated. Alkaline phosphatase of detached cells from each PLLA membranes were measured. Ion beam-irradiated PLLA membranes showed no significantly morphological change from control PLLA membranes. In the measurement of water contact angle to each membrane, the dose range of ion beam employed in this study reduced significantly contact angles. Among them, $5{\times}10^{14}\;ion/cm^2$ showed the least contact angle. The vitalities of osteoblastes detached from each membranes were confirmed by flow cytometer and well attached cells with their own morphology onto each membranes were observed by SEM. A very strong improvement of the cell adhesion and proliferation was observed for ion beam-irradiated surfaces of PLLA membranes. $5{\times}10^{15}\;ion/cm^2$ exhibited the most strong effect also in cellular adherence. ALPase activities also tended to increase in ion beam-irradiated membranes but statistical differences were not found. These results suggested that ion beam irradiation is an effective tool to improve the adhesion and spreading behaviour of the cells onto the biodegradable PLLA membranes for the promotion of membrane-tissue integration.

  • PDF

The Preparation and Electrochemical Properties of Homogeneous Anion-exchange Composite Membranes Containing Acrylonitrile-butadiene Rubber (Acrylonitrile-butadiene rubber를 포함한 균질계 음이온교환 복합막의 제조 및 전기화학적 특성)

  • Song, Pu Reum;Mun, Hye Jin;Hong, Sung Kwon;Kim, Jeoung Hoon;Chang, Bong Jun
    • Membrane Journal
    • /
    • v.24 no.6
    • /
    • pp.463-471
    • /
    • 2014
  • While poly(styrene)-based anion exchange membranes have the advantage like easy and simple manufacturing process, they also possess the disadvantage of poor durability due to their brittleness. Acrylonitrile-butadiene rubber was used here as an additive to make the membranes have improved flexibility and durability. For the preparation of the anion exchange membranes, a PP mesh substrate was immersed into monomer solutions with vinylbenzyl chloride, styrene, divinylbenzene and benzoyl peroxide, then thermally polymerized & crosslinked. The prepared membranes were subsequently post-aminated using trimethylamine to result in $-N+(CH_3)_3$ group-containing composite membranes. Various contents of vinylbenzyl chloride and acrylonitrile-butadiene rubber were investigated to optimize the membrane properties and the prepared membranes were evaluated in terms of water content, ion exchange capacity and electric resistance. It was found that the optimized composite membranes showed higher IEC and lower electric resistance than a commercial anion exchange membrane(AMX) and have excellent flexibility and durability.

Applications and a View of Gas Separation by Membranes in Japan (일본에서의 기체분리막의 현황 및 응용)

  • Nakagawa, Tsutomu
    • Membrane Journal
    • /
    • v.4 no.1
    • /
    • pp.9-29
    • /
    • 1994
  • The development of separation technology is an important research subject as is clear from its role in the Japanese government's research and development program for basic technology for the next generation(1981~1990). Japan is poor not only in mineral resources but also in energy resources and if a sudden change occurs in oil producing facility or an accident occurs in a nuclear power plant, then energy policy must undergo changes and economic foundations may collapse. Japan has already experienced this. Although, oil prices are stable at present and Japan can import oil at low cost due to the yen appreciation, Japan needs to promote development work for any new energy crisis that may come in the future. This has been the motive for gas separation membrane development in Japan. The study of gas permeation through polymer membranes, which is the basis for membranes for gas separation, at Japanese universities began many years ago, but interest in membranes for gas separation was aroused mainly by the Government. The development of gas separation membranes in Japan started with membranes for oxygen separation on an industrial scale.

  • PDF

FTIR study of E7 liquid crystals confined to perfluorinated carboxylic acid treated cylindrical cavities of Anodisc membranes

  • Ha, Ki-Ryong;Ahn, Hee-Jun;Yoon, Sung-Kyoun;Lee, Dong-Ho;West, John L.
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.369-372
    • /
    • 2004
  • Orientation of E7 liquid crystals(LCs) confined to 200 nm-diameter cylindrical cavities of Anodisc membranes are investigated by FTIR dichroism techniques. The cavity walls of the confining pores are chemically modified with different perfluorinated carboxylic acids (PCA, $C_nF_{2n+1}$COOH, n=3, 4, 5, 6). From the FTIR spectra of PCA treated alumina Anodsic membranes, we found the salt formation between -COOH group of PCA and Anodisc membrane. From the FTIR spectra of LC filled Anodisc membranes, we found abrupt alignment direction change of LC molecules between n=4 and 5 for 1 mM PCA treated Anodisc membranes, from parallel to perpendicular direction to the cavity walls. But 5mM PCA treated Anodisc membranes, alignment direction of LC molecules changed between n=3 and n=4, from parallel to perpendicular direction.

  • PDF