• Title/Summary/Keyword: Membrane-coated tablet

Search Result 3, Processing Time 0.016 seconds

Controlled Release of Isonicontinic Acid Hydrazide from the Membrane-Coated Tablet

  • Kim, Ki-Man;Kim, Shin-Keun
    • Archives of Pharmacal Research
    • /
    • v.8 no.1
    • /
    • pp.7-14
    • /
    • 1985
  • Membrane-coated tablet of isonicotinic acid hydrazide (INAH) which releases INAH at the zero-order kinetics was deveoped. It consisted of a soluble tablet core surrounded by a porous membrane which controls the diffusion rate. Tablet cores were prepared by compressing granules of INAH and polyvinyl chloride (PVC) dissolved in methyl ethyl ketone in which micronized sucrose were suspended. Diffusion rate of INAH from the tablet through the membrane was constant until the loaded INAH in the core was almost released. The rate was independent of pH of the dissolution medium. Water-soluble sucrose particles behaved as a poreproducing material in the water-insoluble PVC film coat. The pH independency of the rate was probably due to the high solubility of INAH in the water of wide pH range. The diffusion rate of INAH could be controlled by chnaging the composition of the membrane or the coat weight. This membrane-coated INAH tablet seemed to be a powerful candidate for the controlled release drug delivery system (DDS) of INAH or other highly watersoluble drugs.

  • PDF

Development of Controlled Release Oral Drug Delivery System by Membrane-Coating Method-I - Preparation and pharmaceutical evaluation of controlled release acetaminophen tablets-

  • Shim, Chang-Koo;Kim, Ki-Man;Kim, Young-Il;Kim, Chong-Kook
    • Archives of Pharmacal Research
    • /
    • v.13 no.2
    • /
    • pp.151-160
    • /
    • 1990
  • In order to develop a controlled-release oral drug delivery system (DDS) which sustains the plasma acetaminophen (AAP) concentration for a certain period of time, microporous membrane-coated tablets were prepared and evaluated in vitro. Firstly, highly water-soluble core tablet of AAP were prepared with various formulations by wet granulation and compression technique. Then the core tablets were coated with polyvinychloride (PVC) in which micronized sucrose particles were dispersed. Effect of formula compositions of core tablets and coating suspensions on the pharmaceutical characteristics such as drug release kinetics and membrane stability of the coated tablets was investigated in vitro. AAP was released from the coated tablets as a zero-order rate in a pH-independent manner. This independency of AAP release to pH change from 1.2 to 7.2 is favorable for the controlled oral drug delivery, since it will produce a constant drug release in the stomach and intestine regardless of the pH change in the GI tract. Drug release could be extended upto 10 h according to the coating condition. The release rate could be controlled by changing the formula compositions of the core tablets and coating suspensions, coat weight per each tablet, and especially PVC/sucrose ratio and particle size of the sucrose in the coating suspension. The coated tablets prepared in this study had a fairly good pharmaceutical characteristics in vitro, however, overall evaluation of the coated tablet should await in vivo absorption study in man.

  • PDF

The Effects of Osmogant and Binder in Membrane on Nifedipine Release from Osmotic Granule (니페디핀의 삼투성 과립에서 삼투염과 반투막내의 결합제 종류가 약물방출에 미치는 영향)

  • Jeong Sung-Chan;Cho Young-Ho;Kim Moon-Suk;Lee Bong;Khang Gil-Son;Rhee John-M.;Lee Hai-Bang
    • Polymer(Korea)
    • /
    • v.30 no.2
    • /
    • pp.112-117
    • /
    • 2006
  • To improve the type error of osmotic tablet which is one of the drug delivery system, osmotic granule could be manufactured by fluidized bed coating. It has drug layer containing different amount of osmogant and is coated with membrane including different types of binder. We confirmed that the morphology of osmotic granule was different at each coating step. The more mont of osmotic agent, the faster drug release was observed due to increasing the driving force for drug release from osmotic granule. And drug release from osmotic granule coated with membrane using different types of binder was differed by solubility of binders to water. The formation of pore in membrane was confirmed by SEM and DSC Membrane using water soluble binder released more amount of drug. From these results, we assured that difference of osmotic pressure between the inside and the outside of granule and porosity of membrane have an effect on drug release from osmotic granule.