• Title/Summary/Keyword: Membrane integrity

Search Result 270, Processing Time 0.026 seconds

Effects of D-Fructose on the Uptake of Iron by the Intestinal Brush-Border Membrane Vesicles from Rats.

  • Kim, Ok-Seon;Lee, Yong-Bok;Oh, In-Joon;Koh, Ik-Bae;Lee, Yeong-Woo
    • Journal of Pharmaceutical Investigation
    • /
    • v.24 no.3
    • /
    • pp.11-18
    • /
    • 1994
  • We have studied the iron uptake by the purified brush-border membrane vesicles (BBMVs) to determine the effect of fructose on the absorption of iron. BBMVs were prepared by the modified calcium precipitation method, The degree of purification was routinely assessed by the marker enzyme, alkaline phosphatase, and the functional integrity was tested by $D-[1-^3H]glucose$ uptake. The appearance of membrane vesicles was shown by transmission electron microscopy (TEM). The uptakes of complexes of labeled iron $[^{59}Fe]$ with fructose and ascorbate were measured with a rapid filtration technique, The uptake rate and pattern of the two iron-complexes, Fe(III)-fructose and Fe(III)-ascorbate, were also observed. A typical overshooting uptake of D-glucose was observed with peak value of $2{\sim}3$ times higher concentration than that at equilibrium. This result was similar to other studies with BBMVs. TEM showed that the size of BBMVs was uniform and we can hardly find any contaminants, Fe(III)-fructose has the higher value of $V_{max}$ and the lower value of Km than those of Fe(III)-ascorbate, respectively. It may be concluded that D-fructose is more effective in promoting the iron absorption than ascorbate.

  • PDF

Effect of Ginseng Alcohol Extract on Sodium Movements across the Red Cell Membrane (인삼이 적혈구막을 통한 $Na^+$ 이동에 미치는 영향)

  • Lee, Syng-Il;Kang, Doo-Hee
    • The Korean Journal of Physiology
    • /
    • v.12 no.1_2
    • /
    • pp.1-5
    • /
    • 1978
  • In an attempt to explore the effect of Ginseng on the permeability of the biological membrane to cations we have investigated the effect of Ginseng-alcohol extract on the transport of $Na^+$ human red blood cell preprations. The $Na^+$ influx was measured in intact red cells using $^{22}Na$ as a tracer and the efflux in reseated red cells using $^{24}Na$ as a tracer. 1. The influx of $Na^+$ was not apparently changed by the Ginseng-alcohol extract of 20mg% in the incubation medium. 2. Similarly, 20mg% Ginseng-alcohol extract in the cellular space did not alter the efflux of $Na^+$ from the cell. However, 50mg% of Ginseng-alcohol extract in the cell resulted in a significant increase in the $Na^+$ efflux and this effect was magnified when the cell was suspended in the medium containing the Ginseng-alcohol extract in a concentration of 20mg %. The results suggest that Ginseng-alcohol extract over 50mg% increase permeability of red blood cell membrane to $Na^+$ by altering the membrane integrity.

  • PDF

Damage to the Cytoplasmic Membrane and Cell Death Caused by Lycopene in Candida albicans

  • Sung, Woo-Sang;Lee, In-Seon;Lee, Dong-Gun
    • Journal of Microbiology and Biotechnology
    • /
    • v.17 no.11
    • /
    • pp.1797-1804
    • /
    • 2007
  • Lycopene, an acyclic carotenoid found in tomatoes (Lycopersicon esculentum) and a number off fruits, has shown various biological properties, but its antifungal effects remain poorly understood. The current study investigated the antifungal activity of lycopene and its mode of action. Lycopene showed potent antifungal effects toward pathogenic fungi, tested in an energy-independent manner, with low hemolytic effects against human erythrocytes. To confirm the antifungal effects of lycopene, its effects on the dimorphism of Candida albicans induced by fetal bovine serum (FBS), which plays a key role in the pathogenesis of a host invasion, were investigated. The results showed that lycopene exerted potent antifungal activity on the serum-induced mycelia of C. albicans. To understand the antifungal mode of action of lycopene, the action of lycopene against fungal cell membranes was examined by FACScan analysis and glucose and trehalose-release test. The results indicated that lycopene caused significant membrane damage and inhibited the normal budding process, resulting from the destruction of membrane integrity. The present study indicates that lycopene has considerable antifungal activity, deserving further investigation for clinical applications.

Establishment of Optimal Conditions for the Hypoosmotic Swelling Test to Evaluate the Integrity of Spermatozoal Plasma Membrane in Dog

  • Jang Hyun-Yong;Jung Yoo-Sung;Kim Jong-Taek;Park Chun-Keun;Cheong Hee-Tae;Kim Choung-Ik;Yang Hoo-Keun
    • Reproductive and Developmental Biology
    • /
    • v.30 no.1
    • /
    • pp.71-74
    • /
    • 2006
  • Hypoosmotic swelling test (HOST) is used for evaluating the plasma membrane function and fertilizing ability in mammal spermatozoa. However, HOS solutions and experimental conditions have not been determined clearly for assessing canine spermatozoa. This study was conducted to examine the HOS solutions and assay conditions, including incubation time (30 to 120 min), storage temperature (4, 17 and $20^{\circ}C$), semen status (fresh and frozen). Maximum spermatozoal plasma membrane swelling was obtained in an 150 mOsm Na-citrate/Fructose solutions with an incubation time for 45 min. The storage temperature and semen status affected the percentage of HOS positive spermatozoa. The HOS test adapted to canine spermatozoa in this study was simple and highly consistent assay with good repeatability. The optimal condition of HOST in canine spermatozoa is an 150 mOsm Na-citrate/Fructose solutions with an incubation time for 45 min regardless of semen storage temperature and semen status.

Fungicidal Effect of Prenylated Flavonol, Papyriflavonol A, Isolated from Broussonetia papyrifera (L.) Vent. Against Candida albicans

  • Sohn, Ho-Yong;Kwon, Chong-Suk;Son, Kun-Ho
    • Journal of Microbiology and Biotechnology
    • /
    • v.20 no.10
    • /
    • pp.1397-1402
    • /
    • 2010
  • Papyriflavonol A (PapA), a prenylated flavonoid [5,7,3',4'-tetrahydroxy-6,5'-di-(${\gamma},{\gamma}$-dimethylallyl)-flavonol], was isolated from the root barks of Broussonetia papyrifera. Our previous study showed that PapA has a broad-spectrum antimicrobial activity against pathogenic bacteria and fungi. In this study, the mode of action of PapA against Candida albicans was investigated to evaluate PapA as an antifungal agent. The minimal inhibitory concentration (MIC) values were 10~25 ${\mu}g/ml$ for C. albicans and Saccharomyces cerevisiae, Gram-negative bacteria (Escherichia coli and Salmonella typhimurium), and Gram-positive bacteria (Staphylococcus epidermidis and Staphylococcus aureus). The kinetics of cell growth inhibition, scanning electron microscopy, and measurement of plasma membrane florescence anisotrophy revealed that the antifungal activity of PapA against C. albicans and S. cerevisiae is mediated by its ability to disrupt the cell membrane integrity. Compared with amphotericin B, a cell-membrane-disrupting polyene antibiotic, the hemolytic toxicity of PapA was negligible. At 10~25 ${\mu}g/ml$ of MIC levels for the tested strains, the hemolysis ratio of human erythrocytes was less than 5%. Our results suggest that PapA could be a therapeutic fungicidal agent having potential as a broad spectrum antimicrobial agent.

Sclerotiorin: a Novel Azaphilone with Demonstrated Membrane Targeting and DNA Binding Activity against Methicillin-Resistant Staphylococcus aureus

  • Dasagrandhi, Chakradhar;Pandith, Anup;Imran, Khalid
    • Microbiology and Biotechnology Letters
    • /
    • v.48 no.4
    • /
    • pp.429-438
    • /
    • 2020
  • The emergence of multi-drug resistant, pathogenic methicillin-resistant Staphylococcus aureus (MRSA) is a threat to global health and has created a need for novel functional therapeutic agents. In this study, we evaluated the underlying mechanisms of the anti-MRSA effect of an azaphilone pigment, sclerotiorin (SCL) from Penicillium sclerotiorum. The antimicrobial activity of SCL was evaluated using agar disc diffusion, broth microdilution, time-kill assays and biophysical studies. SCL exhibits selective activity against Gram positive bacteria including MRSA (range, MIC = 128-1028 ㎍/ml) and exhibited rapid bactericidal action against MRSA with a > 4 log reduction in colony forming units within three hours of administration. Biophysical studies, using fluorescent probes and laser or electron microscopy, demonstrated a SCL dose-dependent alternation in membrane potential (62.6 ± 5.0.4% inhibition) and integrity (> 95 ± 2.3%), and the release of UV260 absorbing materials within 60 min (up to 3.2 fold increase, p < 0.01) of exposure. Further, SCL localized to the cytoplasm and hydrolyzed plasmid DNA. While in vitro checkerboard studies revealed that SCL potentiated the antimicrobial activity of topical antimicrobials such as polymixin, neomycin, and bacitracin (Fractional Inhibitory Concentration Index range, 0.26-0.37). Taken together these results suggest that SCL targets the membrane and DNA of MRSA to facilitate its anti-MRSA antimicrobial effect.

Artemisia vulgaris extract causes precocious acrosome reaction and viability loss but low rate of membrane damage in mouse spermatozoa

  • Bhandari, Sabina;Sharma, Jayaswori;Rizal, Sarbesh;Yi, Young-Joo;Manandhar, Gaurishankar
    • Journal of Animal Science and Technology
    • /
    • v.63 no.1
    • /
    • pp.58-68
    • /
    • 2021
  • Several herbs including Artemisia are known to possess conceptive property. In the present study, mouse spermatozoa were incubated with ethanol extract of Artemisia vulgaris leaves. The effect of extract on acrosome exocytosis was studied by labeling spermatozoa with fluorescein isothiocyanate (FITC) peanut agglutinin and by staining with Coomassie blue. Viability and membrane integrity were studied by Trypan-blue staining and hypo-osmotic swelling test. Artemisia extract at very low concentration caused precocious acrosome reaction and loss of sperm viability. Acrosome reaction increased remarkably from 22.63% to 88.42% with increasing extract concentration from 0 to 2,000 ㎍/mL. However, the viability loss of spermatozoa was increased from 11.71% in control to 63.73% in samples treated, evaluated by Trypan-blue staining method. Membrane damage caused by the extract, evaluated by hypo-osmotic swelling test was even low, ranging from 2.27% to only 24.23%. These results indicate that Artemisia extract might block fertilization by causing precocious acrosome exocytosis in spermatozoa. A direct contraceptive effect was tested by injecting the plant extract into the vagina of female mice and then allowing them to mate with normal males. The treated female mice delivered significantly fewer litters in comparison to the control.

Antibacterial Activity of Coffea robusta Leaf Extract against Foodborne Pathogens

  • Yosboonruang, Atchariya;Ontawong, Atcharaporn;Thapmamang, Jadsada;Duangjai, Acharaporn
    • Journal of Microbiology and Biotechnology
    • /
    • v.32 no.8
    • /
    • pp.1003-1010
    • /
    • 2022
  • The purpose of this study was to examine the phytochemical compounds and antibacterial activity of Coffea robusta leaf extract (RLE). The results indicated that chlorogenic acid (CGA) is a major component of RLE. The minimum inhibitory concentrations (MICs) of RLE against Staphylococcus aureus, Bacillus subtilis, Escherichia coli, and Salmonella Typhimurium were 6.25, 12.5, 12.5, and 12.5 mg/ml, respectively. RLE effectively damages the bacterial cell membrane integrity, as indicated by the high amounts of proteins and nucleic acids released from the bacteria, and disrupts bacterial cell membrane potential and permeability, as revealed via fluorescence analysis. Cytotoxicity testing showed that RLE is slightly toxic toward HepG2 cells at high concentration but exhibited no toxicity toward Caco2 cells. The results from the present study suggest that RLE has excellent potential applicability as an antimicrobial in the food industry.

Effect of Ginseng Saponin on the Integrity of Lysosomes (인삼사포닌이 Lysosome의 안정성에 미치는 영향)

  • 원광애;정노팔
    • Journal of Ginseng Research
    • /
    • v.9 no.1
    • /
    • pp.119-127
    • /
    • 1985
  • The effect of ginseng saponin on acid phosphatase (AP) activity in liver Iysosomes was investigated and the mechanism by which ginseng saponin may function on the integrity of Iysosomes was discussed. The experimental results obtained are summarized as follows; 1, A very marked increase in the AP activity was observed in the supernatant of hypotonic medium, as compared with that of isotonic medium, indicating that the hypoosmotic shock per so results in activation through osmotic Iysis of particles. 2. Ginseng saponin had no effect on the activity of AP if once released from Iysosomes when Iysed in the hypotonic medium, suggesting that ginseng saponin has no effect on the enzyme molecules per se. 3. The AP activity in isotonic medium suspensions was decreased at the concentrations of 10-6, 10-5 and 10-4% of ginseng saponin, but increased at 10-2 and 10-1%. It's suggested that ginseng saponin enhances the integrity of Iysosomes at 10-6, 10-5 and 10-4%, but decreases it at 10-2 and 10-1%. 4. Suspending particles in distilled water resulted in no correlation of AP activity with treatment with ginseng saponin. 5, The AP activity was decreased in the presence of ATP, showing the possible significance of ATP as a Iysosomal stabilizer and the possibility that ginseng saponin may affect a membrane bound ATPase system by which Iysosomal AP release may be controlled.

  • PDF

A potential role for fatty acid biosynthesis genes during molting and cuticle formation in Caenorhabditis elegans

  • Li, Yingxiu;Paik, Young-Ki
    • BMB Reports
    • /
    • v.44 no.4
    • /
    • pp.285-290
    • /
    • 2011
  • Caenorhabditis elegans undergoes a developmental molting process that involves a coordinated interplay among diverse intracellular pathways. Here, we investigated the functions of two fatty acid biosynthesis genes; pod-2, encoding acetyl-CoA carboxylase, and fasn-1, encoding fatty acid synthase, in the C. elegans molting process. Although both the pod-2 and fasn-1 genes were expressed at constant levels throughout C. elegans development, knockdown of the proteins encoded by these genes using RNA interference produced severe defects in triglyceride production, molting, and reproduction that were coupled to suppression of NAS-37, a metalloprotease. An assessment of the structure and integrity of the cuticle using a COL-19::GFP marker and Hoechst 33258 staining showed that downregulation of either pod-2 or fasn-1 impaired cuticle formation and disrupted the integrity of the cuticle and the hypodermal membrane.