• Title/Summary/Keyword: Membrane extraction

Search Result 269, Processing Time 0.031 seconds

A Novel Polymer Membrane for Extraction Applications

  • Wang, Xungai;Xu, Jianying;Paimin, Rohani;Shen, Wei
    • Fibers and Polymers
    • /
    • v.3 no.2
    • /
    • pp.68-73
    • /
    • 2002
  • In this study, a new type of Aliquat 336/PVC membrane has been made for extraction experiments. This new membrane is capable of holding more Aliquat 336 than previously developed extraction membranes, hence overcoming a major problem that has confronted many researchers for a long time. The new membrane has been used try investigate the rate of extraction fur the Cd(II) ion in 2.0 M HCI solution and the effect of membrane thickness on the rate of extraction. The experimental results have shown this new membrane has a promising future in relevant industrial applications. A new method is also used in this study to qualitatively identify the oily substance on the surface of membrane after the extraction experiment was completed. This oily substance has been found to be Aliquat 336.

Transport of Zinc Ion in a Contained Liquid Membrane Permeator with Two Micro-Porous Films (지지막을 이용하는 액막 추출기 내에서 아연 이온의 이동)

  • 주창식;이석희;이민규;홍성수;하홍두;정석기
    • Journal of Environmental Science International
    • /
    • v.9 no.2
    • /
    • pp.159-164
    • /
    • 2000
  • For the purpose of development of a liquid membrane permeator which separates metal ions from aqueous solutions continuously and effectively, a continuous membrane permeator with the membrane solution trapped between extraction and stripping phases by two micro-porous hydrophilic films was manufactured. Experimental researches on the separation of zinc ion from aqueous solutions were performed in the liquid membrane permeator with 30 vol % D2EHPA solution in kerosine as liquid membrane. As results, the liquid membrane permeator separates zinc ion from aqueous solutions continuously and effectively in the wide range of operating conditions. A simple mass transfer rate model using equilibrium constant of the extraction reaction for the system used were proposed, and the model was compared with experimental results of separation of zinc ion in the permeator. And the effects of operating factors, such as space time, pH of extraction solution, extraction temperature, on the separation rate of zinc ion in the permeator were experimentally examined.

  • PDF

Improved Membranes for the Extraction of Heavy Metals

  • Xu, Jianying;Shen, Wei;Paimin, Rohani;Wang, Xungai
    • Fibers and Polymers
    • /
    • v.5 no.1
    • /
    • pp.68-74
    • /
    • 2004
  • This work presents a series of experimental tests on new practical approaches in membrane design to improve extraction capacity and rate. We chose an extraction system involving Aliquat 336 as the extractant and Cd(II) as the metal ion to be extracted to demonstrate these new approaches. The core element in the new membrane assembly was the extractant loaded sintered glass filter. This membrane assembly provided a large interface area between the extractant and the aqueous solution containing metal ions. By recycling the aqueous solution through the membrane assembly, the extraction rate was significantly improved. The membrane assembly also offered good extraction capacity.

LLE and SLM studies for Pd(II) separation using a thiodiglycolamide-based ligand

  • Kumbhaj, Shweta;Prabhu, Vandana;Patwardhan, Anand V.
    • Membrane and Water Treatment
    • /
    • v.9 no.6
    • /
    • pp.463-471
    • /
    • 2018
  • The present paper deals with the liquid-liquid extraction and flat sheet supported liquid membrane studies of Pd(II) separation from nitric acid medium using a novel synthesized ligand, namely, N,N,N',N'-tetraethyl-2,2-thiodiethanthiodiglycolamide (TETEDGA). The effect of various diluents and stripping reagents on the extraction of Pd(II) was studied. The liquid-liquid extraction studies showed complete extraction of Pd(II) in ~ 5 min. The influence of nitric acid and TETEDGA concentration on the distribution of Pd(II) has been investigated. The increase in nitric acid concentration resulted in increase in extraction of Pd(II). Stoichiometry of the extracted species was found to be $Pd(NO_3)_2{\cdot}TETEDGA$ by slope analysis method. Extraction studies with SSCD solution showed negligible uptake of Pt, Cr, Ni, and Fe, thus showing very high selectivity and extractability of TETEDGA for Pd(II). The flat sheet supported liquid membrane studies showed quantitative transport of Pd(II), ~99%, from the feed ($3M\;HNO_3$) to the strippant (0.02 M thiourea diluted in $0.4M\;HNO_3$) using 0.01 M TETEDGA as a carrier diluted in n-dodecane. Extraction time was ~160 min. Parameters such as feed acidity, TETEDGA concentration in membrane phase, membrane porosity etc. were optimized to achieve maximum transport rate. Permeability coefficient value of $2.66{\times}10^{-3}cm/s$ was observed using TETEDGA (0.01 M) as carrier, at 3 M, $HNO_3$ feed acidity across $0.2{\mu}m$ PTFE as membrane. The membrane was found to be stable over five runs of the operation.

Batch and dynamic study of lactic acid extraction using emulsion liquid membrane

  • Berrama, Tarek;Pareau, Dominique;Durand, Gerard
    • Membrane and Water Treatment
    • /
    • v.6 no.4
    • /
    • pp.277-292
    • /
    • 2015
  • The extraction of lactic acid by an emulsion liquid membrane (ELM), in batch and continuous mode, has been reported. On the basis of preliminary experiments, the optimum composition of the organic phase (membrane) is determined. When the SPan 80 is used as surfactant, the emulsion breakage exceeds 50%, but only 10% is obtained when the ECA4360 is used. The effects of surfactant, carrier and solute concentrations, phase volume ratio, and stirring speed on the extraction yield were examined and optimized. Surfactant, carrier and diluent used were ECA4360, trilaurylamine (TLA) and dodecane, respectively; 2-ethylhexane-1,3-diol (EHD) is used as a co-surfactant. Under optimal conditions, emulsion breaking is very low and the swelling is kept at its lowest level. Under the pH conditions of fermentation medium, the extraction yield is lower. A mixer-settler continuous system was used for testing these conditions. The residence time, the number of extraction stages and the stability of the emulsion were studied and optimized. The extraction yield obtained exceeds 90%.

Healing pattern of the mucous membrane after tooth extraction in the maxillary sinus

  • Yoo, Ji-Young;Pi, Sung-Hee;Kim, Yun-Sang;Jeong, Seong-Nyum;You, Hyung-Keun
    • Journal of Periodontal and Implant Science
    • /
    • v.41 no.1
    • /
    • pp.23-29
    • /
    • 2011
  • Purpose: To investigate the healing pattern of the mucous membrane after tooth extraction necessitated by periodontal disease in the maxillary sinus. Methods: One hundred and three patients with 119 maxillary sinuses were investigated. Before implant placement, cone-beam computed tomography (CT) scanning was performed. The causes of extraction, the time elapsed since extraction, smoking, periodontal disease in adjacent teeth, and gender were recorded. In addition, the thickness of the mucous membrane of the maxillary sinus and the height of residual alveolar bone at the extracted area were calculated from CT images. Results: The thickness of the mucous membrane in the periodontal disease group ($3.05{\pm}2.71\;mm$) was greater than that of the pulp disease group ($1.92{\pm}1.78\;mm$) and the tooth fracture group ($1.35{\pm}0.55\;mm$; P<0.05). The causes of extraction, the time elapsed since extraction, and gender had relationships with a thickening of the mucous membrane of the maxillary sinus (P<0.05). In contrast, the height of the residual alveolar bone at the extracted area, periodontal disease in adjacent teeth, and smoking did not show any relation to the thickening of the mucous membrane of the maxillary sinus. Conclusions: The present study revealed distinct differences in healing patterns according to the causes of extraction in the maxillary sinus, especially periodontal disease, which resulted in more severe thickening of the mucous membrane.

Extraction/Separations of Cobalt by Supported Liquid Membrane: A Review

  • Swain, Basudev;Shim, Hyun-Woo;Lee, Chan Gi
    • Korean Chemical Engineering Research
    • /
    • v.57 no.3
    • /
    • pp.313-320
    • /
    • 2019
  • Extraction/separation of cobalt by supported liquid membrane has been reviewed. The review discusses various directions associated with the supported liquid membrane process, such as the kind of supported liquid membrane, the principle of supported liquid membrane, transport mechanism involved, and the advantages and disadvantages of the supported liquid. Finally, extraction and separation of cobalt from other metals using extractant through supported liquid membrane have been reviewed. Separation of cobalt using various reagents and cobalt recovery from scrap using commercial extractant can be a potential perspective from the application of supported liquid membrane application.

A Study on the Mass Transfer and Metal Extraction by use of Hydrophobic Membrane (소수성막을 이용한 금속추출 및 물질전달에 관한 연구)

  • Lee, Ryong-Jin;Kim, Young-Il;Park, Dong-Won
    • Applied Chemistry for Engineering
    • /
    • v.9 no.7
    • /
    • pp.1036-1042
    • /
    • 1998
  • It was investigated that the extraction of Cr(VI) from aqueous solution into the organic TDA and the stripping(back extraction) of Cr(VI) from the Cr(VI)-TDA complex into NaOH aqueous solution by hydrophobic hollow fiber membrane. It was found that the mass transfer rates of stripping process were smaller than those of the extraction process. This result was expected that membrane resistance, neglected in the extraction process, acts on the stripping process when organic phase flow in the tube side of the hydrophobic membrane. Hollow fiber modules were made by potting the desired number(60, 100, 150, 300fibers). We also examined the effect of flow rates of aqueous and organic phase on the mass transfer rate in the membrane modules. From these experiments, we identified for the extraction process by using hydrophobic membrane, the effect of flow rate of aqueous phase on the mass transfer rate was significant, but that of organic phase was negligible one. In the stripping process, however, mass transfer rate depend neither flow rate of aqueous(stripping solution) phase nor that of organic(Cr-TDA complex) phase.

  • PDF

Separation of $Sr^{2+}$ Ion from Seawater by Liquid Membrane Permeator with Two Micro-Porous Films (지지막을 이용한 액막 추출기에 의한 합성해수 중의 $Sr^{2+}$ 이온 분리)

  • 주창식;이회근;정갑섭
    • Journal of Environmental Science International
    • /
    • v.9 no.6
    • /
    • pp.517-522
    • /
    • 2000
  • Separation of strontium ion from synthetic seawater in the contained liquid membrane permeator with two micro-porous films was performed. The permeator consisted of a liquid membrane and two cells for aqueous solutions. The liquid membrane consisted of $D_2EHPA(di-2-ethylhexy1-phosphoric acid)$ and DCH18C6 (dicyclohexano-18-crown-6),diluted to 30 vol% with kerosine and was trapped between two micro-porous hydrophilic films. This liquid membrane separated two aqueous solutions, one of which was synthetic seawater and the other of which was the stripping solutions consisting of 1mol/L $H_2SO_4$ solution. The effects of various operating parameters on the extraction rate and equilibrium extraction ratio of strontium ion from synthetic seawater were experimentally examined. The addition of DCH18C6 to the $D_2EHPA$ solution caused synergy effect on the extraction of strontium ion. The permeator extracted strontium ion from synthetic seawater effectively with high membrane life time.

  • PDF

An Investigation of Solubility of Aliquat 336 in Different Extracted Solutions

  • Xu, Jianying;Paimin, Rohani;Shen, Wei;Wang, Xungai
    • Fibers and Polymers
    • /
    • v.4 no.1
    • /
    • pp.27-31
    • /
    • 2003
  • A major concern in solvent extraction process is the loss of extractant into the aqueous phase due to its slight solubility in the aqueous phase. Similarly, in membrane extraction processes, extractant loss through extractant leakage from the membrane into the aqueous phase is also a concern. Several published membrane extraction studies using Aliquat 336 ai the extractant, have expressed this concern, but none has studied extractant leakage quantitatively. It is the authors' opinion that the extractant leakage should be considered at a technical parameter of a membrane. In our laboratory active progress has been made in using Aliquat 336 ‘entangled’ into the polymer membranes to remove heavy metal ions from wastewater samples. In this work, we studied the loss of Aliquat 336 from the point of view of its solubility in aqueous solutions. The results showed that the solubilities or Aliquat 3,36 in an aqueous phase acidified with 2 M HCI it about 0.1 g/100 m/ of the solution. This figure provides a useful guideline for evaluating the leakage of the Aliquatoat 336 extractant from the membranes.