• Title/Summary/Keyword: Membrane electrode assembly(MEA)

Search Result 107, Processing Time 0.026 seconds

Electrochemical Characteristics of Solid Polymer Electrode Fabricated with Low IrO2 Loading for Water Electrolysis

  • Ban, Hee-Jung;Kim, Min Young;Kim, Dahye;Lim, Jinsub;Kim, Tae Won;Jeong, Chaehwan;Kim, Yoong-Ahm;Kim, Ho-Sung
    • Journal of Electrochemical Science and Technology
    • /
    • v.10 no.1
    • /
    • pp.22-28
    • /
    • 2019
  • To maximize the oxygen evolution reaction (OER) in the electrolysis of water, nano-grade $IrO_2$ powder with a low specific surface was prepared as a catalyst for a solid polymer electrolyte (SPE) system, and a membrane electrode assembly (MEA) was prepared with a catalyst loading as low as $2mg\;cm^{-2}$ or less. The $IrO_2$ catalyst was composed of heterogeneous particles with particle sizes ranging from 20 to 70 nm, having a specific surface area of $3.8m^2g^{-1}$. The anode catalyst layer of about $5{\mu}m$ thickness was coated on the membrane (Nafion 117) for the MEA by the decal method. Scanning electron microscopy (SEM) and electrochemical impedance spectroscopy (EIS) confirmed strong adhesion at the interface between the membrane and the catalyst electrode. Although the loading of the $IrO_2$ catalyst was as low as $1.1-1.7mg\;cm^{-2}$, the SPE cell delivered a voltage of 1.88-1.93 V at a current density of $1A\;cm^{-2}$ and operating temperature of $80^{\circ}C$. That is, it was observed that the over-potential of the cell for the oxygen evolution reaction (OER) decreased with increasing $IrO_2$ catalyst loading. The electrochemical stability of the MEA was investigated in the electrolysis of water at a current density of $1A\;cm^{-2}$ for a short time. A voltage of ~2.0 V was maintained without any remarkable deterioration of the MEA characteristics.

Measurement of Hydrogen Crossover by Gas Chromatograph in PEMFC (고분자전해질 연료전지에서 기체 크로마토그래프에 의한 수소투과도 측정)

  • Jeong, Jaejin;Jeong, Jaehyeun;Kim, Saehoon;Ahn, Byungki;Ko, Jaijoon;Park, Kwonpil
    • Korean Chemical Engineering Research
    • /
    • v.52 no.4
    • /
    • pp.425-429
    • /
    • 2014
  • Until a recent day, degradation of PEMFC MEA(membrane and electrode assembly) has been studied, separated with membrane degradation and electrode degradation, respectively. But membrane and electrode were degraded coincidentally at real PEMFC operation condition. During simultaneous degradation, there was interaction between membrane degradation and electrode degradation. Hydrogen permeability was used often to measure degradation of electrolyte membrane in PEMFC. In case of hydrogen permeability measured by LSV(Linear Sweep Voltammetry) method, the degradation of electrode decrease the value of hydrogen crossover current due to LSV methode's dependence on electrode active area. In this study hydrogen permeability was measured by gas chromatograph(GC) when membrane and electrode degraded at the same time. It was showed that degradation of electrode did not affect the hydrogen permeability measured by GC because of GC methode's independence on electrode active area.

Study on the Short Resistance and Shorting of Membrane of PEMFC (PEMFC 고분자 막의 Short 저항 및 Shorting에 관한 연구)

  • Oh, Sohyeong;Gwon, Jonghyeok;Lim, Daehyeon;Park, Kwonpil
    • Korean Chemical Engineering Research
    • /
    • v.59 no.1
    • /
    • pp.6-10
    • /
    • 2021
  • The shorting resistance (SR) of the PEMFC(Proton Exchange Membrane Fuel Cell) polymer membrane is an important indicator of the durability of the membrane. When SR decreases, shorting current (SC) increases, reducing durability and performance. When SR becomes less than about 0.1 kΩ·㎠, shorting occurs, the temperature rises rapidly, and MEA(Membrane Electrode Assembly) is burned to end stack operation. In order to prevent shorting, we need to control the SR, so the conditions affecting the SR were studied. There were differences in the SR measurement methods, and the SR measurement method, which improved the DOE(Department of Energy) and NEDO(New Energy and Industrial Technology Development Organization) method, was presented. It was confirmed that the SR decreases as the relative humidity, temperature and cell compression pressure increase. In the final stage of the accelerated durability evaluation process of the polymer membrane, SR rapidly decreased to less than 0.1 kΩ·㎠, and the hydrogen permeability became higher than 15 mA/㎠. After dismantling the MEA, SEM(Scanning Electron Microscope) analysis showed that a lot of platinum was distributed inside the membrane.

Iron Ion Contamination and Acid Washing Effect of Polymer Membrane and Electrode in Polymer Electrolyte Fuel Cell (고분자전해질 연료전지에서 고분자 막과 전극의 철 이온 오염 및 산 세척 효과)

  • Yoo, Donggeun;Park, Minjeong;Oh, Sohyeong;Park, Kwon-Pil
    • Korean Chemical Engineering Research
    • /
    • v.60 no.1
    • /
    • pp.20-24
    • /
    • 2022
  • In the process of long-term use of PEMFC (Proton Exchange Membrane Fuel Cells), chemical degradation of membrane electrode assembly (MEA) occurs due to corrosion of stack elements and contamination of supply gas. In this study, we investigated whether chemically degraded MEA can be recovered by acid washing. The performance was measured and compared in a PEMFC cell after contamination with iron ions and washing with an aqueous sulfuric acid solution. The performance was reduced by about 25% by 0.5 ppm iron ion contamination, and 97.1% performance recovery was possible by washing of 0.15 M sulfuric acid. The membrane resistance was increased due to iron ion contamination of the polymer membrane, and the ionic conductivity was restored by washing the iron ions from the membrane while minimizing the loss of the electrode catalyst by washing with a low-concentration sulfuric acid aqueous solution. The possibility of solving the decrease in durability caused by chemical contamination of PEMFC MEA by the acid washing was confirmed.

Characteristics of Microbial Fuel Cells Using Livestock Waste and Degradation of MEA (가축 분뇨를 이용한 미생물 연료전지의 특성 및 MEA 열화)

  • Kim, Young-Sook;Chu, Cheun-Ho;Jeong, Jae-Jin;Ahn, Myung-Won;Na, Il-Chai;Lee, Jeong-Hoon;Park, Kwon-Pil
    • Korean Chemical Engineering Research
    • /
    • v.52 no.2
    • /
    • pp.175-181
    • /
    • 2014
  • Microbial fuel cells (MFC) were operated with livestock wastes and PEMFC (Proton Exchange Membrane Fuel Cells) MEA (Membrane and Electrode Assembly). OCV of MFC with mixtures of microbial was higher than that of MFC with single microbial. MFC using pig wastes showed highest OCV (540 mV) among cow waste, chicken waste and duck waste. And the power density of MFC using pig waste was $963mW/m^2$. Contamination of MEA with $Na^{2+}$, $Ca^{2+}$, $K^+$ ion and impurities was the one cause for low performance of MFC during operation.

Durability of MEA Using sPEEK Membrane Reinforced with Poly Imide in PEMFC (고분자전해질연료전지에서 폴리이미드 강화 sPEEK막 MEA의 내구성)

  • Lee, Hye-Ri;Na, Il-Chai;Oh, Sung-Jun;Park, Kwon-Pil
    • Korean Chemical Engineering Research
    • /
    • v.55 no.3
    • /
    • pp.296-301
    • /
    • 2017
  • Recently, there are many efforts focused on development of more economical non-fluorinated membranes for PEMFCs (Proton Exchange Membrane Fuel Cells). In this study, sulfonated poly (ether ether ketone) (sPEEK) membrane reinforced with poly imide was made to enhance of membrane durability. In order to test durability of single (un-reinforced) membrane and reinforced membrane MEA (Membrane and Electrode Assembly), degradation accelerated stress test was used. Before and after degradation, I-V polarization curve, hydrogen crossover current, electrochemical surface area, membrane resistance and charge transfer resistance were measured. As a result of experiments, hydrogen crossover current of reinforced MEA was lower than that of single MEA, therefor durability of reinforced MEA was higher than that of single MEA. There was not especially short phenomena in reinforced MEA after degradation accelerated stress test.

CO Tolerance Improvement of MEA Using Metal Thin Film by Sputtering Method in PEM Fuel Cell (스퍼터링 공정으로 제조된 금속박막을 이용한 고분자전해질 연료전지 막-전극접합체의 일산화탄소에 대한 내구성 연구)

  • Cho, Yong-Hun;Yoo, Sung-Jong;Cho, Yoon-Hwan;Park, Hyun-Seo;Sung, Yung-Eun
    • Journal of the Korean Electrochemical Society
    • /
    • v.10 no.4
    • /
    • pp.279-282
    • /
    • 2007
  • When reformer for fuel cell is used, CO in hydrogen gas leads to a seriously decreased membrane electrode assembly (MEA) performance by catalyst poisoning. The effect of CO on performance of modified MEA by sputtering method is studied in this paper. The experimental results show that sputtered Pt and Ru thin film improve a single cell performance of MEA and sputtered metal thin film has a CO tolerance. The air injection process on anode show improved CO tolerance test result. Moreover, Pt, Ru and PtRu thin film by sputtering had influence on the CO tolerance with air injection process.

Electrochemical Characteristics of Pt/PEM/Pt-Ru MEA for Water Electrolysis (수전해용 Pt/PEM/Pt-Ru MEA의 전기화학적 특성)

  • Kweon, Oh-Hwan;Kim, Kyung-Eon;Jang, In-Young;Hwang, Yong-Koo;Chung, Jang-Hoon;Moon, Sang-Bong;Kang, An-Soo
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.19 no.1
    • /
    • pp.18-25
    • /
    • 2008
  • The membrane electrode assembly(MEA) was prepared by a nonequilibrium impregnation- reduction (I-R) method. Nafion 117 and covalently cross-linked sulfonated polyetherether with tungsto- phosphoric acid (CL-SPEEK/TPA30) prepared by our laboratory, were chosen as polymer electrolyte membrane(PEM). $Pt(NH_3)_4Cl_2$, $RuCl_3$ and reducing agent $(NaBH_4)$ were used as electrocatalytic materials. Electrochemical activity surface area(ESA) and specific surface area(SSA) of Pt cathodic electrode with Nafion 117 were $22.48m^2/g$ and $23.50m^2/g$ respectively under the condition of 0.8 M $NaBH_4$. But Pt electrode prepared by CL-SPEEK/TPA30 membrane exhibited higher ESA $23.46m^2/g$ than that of Nafion 117. In case of Pt-Ru anodic electrode, the higher concentration of Ru was, the lower potential of oxygen reduction and region of hydrogen desorption was, and Pt-Ru electrode using 10 mM $RuCl_3$ showed best properties of SSA $34.09m^2/g$ with Nafion 117. In water electrolysis performance, the cell voltage of Pt/PEM/Pt-Ru MEA with Nafion 117 showed cell property of 1.75 V at $1A/cm^2$ and $80{\circ}C$. On the same condition, the cell voltage with CL-SPEEK/TPA30 was the best of 1.73 V at $1A/cm^2$.

Humidification Optimization in Silicon-based Miniaturized Fuel Cell (실리콘으로 제작된 소형 연료 전지에서 가습 조건의 최적화)

  • Kwon, Oh-Joong;Won, Ho-Youn;Kim, Jae-Jeong
    • Journal of the Korean Electrochemical Society
    • /
    • v.10 no.2
    • /
    • pp.104-109
    • /
    • 2007
  • Single fuel cell was fabricated with a MEA (membrane electrode assembly) that had a $4cm^2$ active area and with silicon bipolar plates those were introduced to miniaturize the fuel cell by replacing heavy weight graphite plates. Optimum humidification condition for the single cell was selected based on performance results obtained varying humidifier temperature at a fixed feed rate of hydrogen and oxygen. Furthermore, to study the effect of humidification condition on the performance of a fuel cell stack, the fuel cell stack consisting of two MEAs and silicon bipolar plates was studied, then problems and characteristics of silicon-based fuel cell stack were examined.

Single Cell Performance Recovery of $SO_2$ Poisioned PEMFC using Cyclic Voltametry (순환전류 전압법을 이용한 이산화황 피독 PEMFC 단위전지의 성능 회복)

  • Lee, Soo;Jin, Seok-Hwan
    • Journal of the Korean Applied Science and Technology
    • /
    • v.28 no.4
    • /
    • pp.497-501
    • /
    • 2011
  • Polymer electrolyte membrane fuel cell (PEMFC) performance degrade when sulfur dioxide is present in the fuel hydrogen gas, this is referred as $SO_2$ poisoning. This paper reveals $SO_2$ poisoning on PEMFC cathode part by measuring electrical performance of single cell under 1 ppm and 5 ppm on $SO_2$ gas operating. The security of $SO_2$ poisoning depended on $SO_2$ concentration under the best operating conditions($65^{\circ}C$ of cell temperature and 100% of relative humidity between anode and cathode). $SO_2$ adsorption occured on the surface of catalyst layer on membrane electrode assembly (MEA), In addition, MEA poisoning by $SO_2$ was cumulative but reversible. After poisoning within 5 ppm $SO_2$ for 1hr, the electrical performance of PEMFC was found to recover up to about 93% by cyclic voltametry scan.