• Title/Summary/Keyword: Membrane distillation

Search Result 123, Processing Time 0.022 seconds

Ammonia Removal Characteristics in Membrane Contactor System Using Tubular PTFE Membrane (관형 PTFE 분리막을 이용한 막 접촉기(Membrane Contactor) 시스템에서 암모니아의 제거 특성)

  • Ahn, Yong-Tae;Hwang, Yu-Hoon;Shin, Hang-Sik
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.33 no.5
    • /
    • pp.353-358
    • /
    • 2011
  • In this study, ammonia removal characteristics in membrane contactor system under various operating conditions were evaluated. The mass transfer coefficient was used to quantitatively compare the effect of various operation conditions on ammonia removal efficiency. Effective removal of ammonia was possible with the tubular PTFE membrane contactor system at all tested conditions. Among the various operation parameters, contact time and solution pH showed significant effect on ammonia removal mechanism. Overall ammonia removal rate was not significantly affected by influent suspended solution concentration unlike other pressure driven membrane filtration processes. Also the osmotic distillation phenomena which deteriorate the mass transfer efficiency can be minimized by preheating of strip solution. Membrane contactor system can be a possible alternative to treat high strength nitrogen wastewater by optimizing operation conditions such as stripping solution flow rate, influent wastewater temperature, and influent pH.

Sensitivity analysis and Taguchi application in vacuum membrane distillation

  • Upadhyaya, Sushant;Singh, Kailash;Chaurasia, Satyendra Prasad;Baghel, Rakesh;Singh, Jitendra Kumar;Dohare, Rajeev Kumar
    • Membrane and Water Treatment
    • /
    • v.9 no.6
    • /
    • pp.435-445
    • /
    • 2018
  • In this work, desalination experiments were performed on vacuum membrane distillation (VMD). Process parameters such as feed flow rate, vacuum degree on permeate side, feed bulk temperature and feed salt concentration were optimized using sensitivity analysis and Taguchi method. The optimum values of process parameters were found to be 2 lpm of feed flow rate, $60^{\circ}C$ of feed bulk temperature, 5.5 kPa of permeate-side pressure and 5000 ppm of salt concentration. The permeate flux at these conditions was obtained as $26.6kg/m^2{\cdot}hr$. The rejection of salt in permeate was found to be 99.7%. The percent contribution of various process parameters using ANOVA results indicated that the most important parameter is feed bulk temperature with its contribution of 95%. The ANOVA results indicate that the percent contribution of permeate pressure gets increased to 5.384% in the range of 2 to 7 kPa as compared to 0.045% in the range of 5.5 to 7 kPa.

Prevention of membrane fouling by roughing filter for the stand-alone MD process (해수담수화 막 증류 공정에서 유입수 전처리 적용에 따른 막 오염 평가)

  • Yun, Taekgeun;Jeong, Seongpil;Kim, Hyewon;Hong, Seungkwan;Lee, Seockheon
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.32 no.4
    • /
    • pp.301-307
    • /
    • 2018
  • Membrane distillation (MD) is a thermally driven desalination process with a hydrophobic membrane. MD process has been known to have a lower fouling potential compared to other pressure-based membrane desalination process (NF, RO). However, membrane fouling also occurs in MD process. In this study, the membrane fouling was observed in MD process according to the pre-treatment processes. The filtration and precipitation processes were applied as the pre-treatment to prevent the membrane fouling. The pore sizes of roughing filters were 0.4, 5, 10, 30, and $60{\mu}m$. The concentration of the coagulant was 1.2 mg/L as $FeCl_3$. The membrane fouling on MD membrane was successfully removed with both pre-treatment processes.

Arsenic removal from drinking water by direct contact membrane distillation

  • Zoungrana, Ali;Zengin, Ismail H.;Elcik, Harun;Yesilirmak, Dilara;Karadag, Dogan;Cakmakci, Mehmet
    • Membrane and Water Treatment
    • /
    • v.7 no.3
    • /
    • pp.241-255
    • /
    • 2016
  • In this study, the treatability of arsenic (As) contaminated water by direct contact membrane distillation (DCMD) at different delta temperatures (${\Delta}T$) 30, 40 and $50^{\circ}C$ has been investigated. Two different pore sizes ($0.22{\mu}m$ and $0.45{\mu}m$) of hydrophobic membranes made of polyvinylidene fluoride (PVDF) were used. The membrane pore sizes, the operating temperatures, the feed solution As concentration and conductivity have been varied during the experimental tests to follow the removal efficiency and flux behavior. Both membranes tested had high removal efficiency of arsenite (As (III)) and arsenate (As (V)) and all permeates presented As concentration far lower than recommended $10{\mu}g/L$ of world health organization (WHO). As concentration was below detection limit in many permeates. Conductivity reduction efficiency was over 99% and the transmembrane flux (TMF) reached $19L/m^2.h$ at delta temperature (${\Delta}T$) of $50^{\circ}C$ with PVDF $0.45{\mu}m$ membrane. The experimental results also indicated that $0.45{\mu}m$ pore sizes PVDF membranes presented higher flux than $0.22{\mu}m$ pore sizes membranes. Regardless of all operating conditions, highest fluxes were observed at highest ${\Delta}T$ ($50^{\circ}C$).

New Pervaporation Membrane for Petroleum Separation

  • Nam, Sang-Yong;John R. Dorgan
    • Proceedings of the Membrane Society of Korea Conference
    • /
    • 2003.07a
    • /
    • pp.77-80
    • /
    • 2003
  • Hydrocarbon-hydrocarbon separations are one of the most important processes in petroleum refining. Distillation process has been used for separating hydrocarbons, but this conventional process is very energy consuming. Pervaporation separation through polymeric membranes is an emerging process alternative to distillation because of energy savings, compact system installation, reduced capital investment, and other performance attributes. In hydrocarbon separations, polymeric membranes are easily swollen by hydrocarbons and can lose mechanical strength. Chemically robust membranes are needed for the separation of hydrocarbons. In this study, the blend membrane was applied to separate benzene and cyclohexane. This is a model system for aliphatic and aromatic separation. Cyclohexane is also physically very similar to benzene and as a result of the very closing boiling points (0.6$^{\circ}C$), benzene and cyclohexane form an azetrope. Thus the system provides a good model for azeotrope breaking by pervaporation. The semi-quantitative thermodynamic model predicts that the calculated selectivity increases with increasing Hydrin contents in the blend membranes. Pervaporation experiments utilizing various operating temperatures and feed concentrations with different blend membranes are compared with the result from semi-quantitative thermodynamic calculations.

  • PDF

Effects of various foulants on flux changes in membrane distillation process (막증류 공정에서 오염 인자가 플럭스 변화에 미치는 영향)

  • Park, Chansoo;Lee, Chang-Kyu;Kim, Jong-oh;Choi, June-Seok
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.30 no.3
    • /
    • pp.327-334
    • /
    • 2016
  • The effects of dissolved inorganic and organic matter in seawater and the characteristics of fouling on the membrane surface were investigated within membrane distillation (MD) process. The changes of the membrane flux of PE and PVDF hollow fiber membranes under natural and synthetic seawater were compared with given variances of temperature. The flux of both membranes under the synthetic seawater, without any organic matter, were higher than that of the natural seawater, indicating the organic fouling on the membrane surface. The surface of the membrane was analyzed using scanning electron microscope (SEM) to examine the fouling. The experiment with organics has shown the formation of thin film over the membrane surface, while the experiment with inorganics has shown only the formation of inorganic crystals. The results indicated the organic matter as the major foulants and that the organics affected the formation of the crystals. Permeate water conductivity of all conditions verified the quality of the water to be better if not similar to that of RO.

Optimization and modification of PVDF dual-layer hollow fiber membrane for direct contact membrane distillation; application of response surface methodology and morphology study

  • Bahrami, Mehdi;Karimi-Sabet, Javad;Hatamnejad, Ali;Dastbaz, Abolfazl;Moosavian, Mohammad Ali
    • Korean Journal of Chemical Engineering
    • /
    • v.35 no.11
    • /
    • pp.2241-2255
    • /
    • 2018
  • RSM methodology was applied to present mathematical models for the fabrication of polyvinylidene fluoride (PVDF) dual-layer hollow fibers in membrane distillation process. The design of experiments was used to investigate three main parameters in terms of polymer concentration in both outer and inner layers and the flow rate of dope solutions by the Box-Behnken method. According to obtained results, the optimization was done to present the proper membrane with desirable properties. The characteristics of the optimized membrane (named HF-O) suggested by the Box-Behnken (at the predicted point) showed that the proposed models are strongly valid. Then, a morphology study was done to modify the fiber by a combination of three types of a structure such as macro-void, sponge-like and sharp finger-like. It also improved the hydrophobicity of outer surface from 87 to $113^{\circ}$ and the mean pore size of the inner surface from 108.12 to 560.14 nm. The DCMD flux of modified fiber (named HF-M) enhanced 62% more than HF-O when it was fabricated by considering both of RSM and morphology study results. Finally, HF-M was conducted for long-term desalination process up to 100 hr and showed stable flux and wetting resistance during the test. These stepwise approaches are proposed to easily predict the main properties of PVDF dual-layer hollow fibers by valid models and to effectively modify its structure.

A Study on the Refinement of the Electronic Grade 2-Propanone (전자 등급 2-프로파논의 정제에 관한 연구)

  • Lee, Sang-Won;Kim, Sung-Il;Park, So-Jin
    • Journal of the Korean Applied Science and Technology
    • /
    • v.25 no.4
    • /
    • pp.503-510
    • /
    • 2008
  • This research is related to the process of refining the raw material, industrial 2-propanone to the 2-propanone of the electronic grade. With this view, the high purity of 2-propanone was obtained through the complex preprocessing(physical adsorption method), distillation process and membrane-filtration of distillate. Impurities were identified by GC and UV, and then we assayed the water content in 2-propanone passing adsorption step made of activated carbon and Zeolite 4A. Furthermore, the distillation was performed with the packed column distillation apparatus to eliminate impurities such as acetaldehyde. Particulates were removed by reduced-pressure filtration through $0.5{\mu}m$ membrane filter and the number of the particulates was measured by particulate counter to confirm the removal of impure particles.

MEMBRANE-BASED GAS AND VAPOR SEPARATIONS

  • Wijmans, Hans
    • Proceedings of the Membrane Society of Korea Conference
    • /
    • 2004.05a
    • /
    • pp.3-6
    • /
    • 2004
  • Industrial gas separation by membranes began in 1980 with the introduction of hollow-fiber polysulfone membrane systems by Permea, at that time a division of Monsanto. This first application was the recovery of hydrogen from ammonia reactor purge gas and was soon followed by the generation of nitrogen from air. Today, membrane gas separation ranks second behind cryogenic distillation in terms of nitrogen production, and this application has drawn the industrial gas companies into the membrane field.(omitted)

  • PDF

Heat and mass transfer analysis in air gap membrane distillation process for desalination

  • Pangarkar, Bhausaheb L.;Sane, Mukund G.
    • Membrane and Water Treatment
    • /
    • v.2 no.3
    • /
    • pp.159-173
    • /
    • 2011
  • The air gap membrane distillation (AGMD) process was applied for water desalination. The main objective of the present work was to study the heat and mass transfer mechanism of the process. The experiments were performed on a flat sheet module using aqueous NaCl solutions as a feed. The membrane employed was hydrophobic PTFE of pore size 0.22 ${\mu}m$. A mathematical model is proposed to evaluate the membrane mass transfer coefficient, thermal boundary layers' heat transfer coefficients, membrane / liquid interface temperatures and the temperature polarization coefficients. The mass transfer model was validated by the experimentally and fitted well with the combined Knudsen and molecular diffusion mechanism. The mass transfer coefficient increased with an increase in feed bulk temperature. The experimental parameters such as, feed temperature, 313 to 333 K, feed velocity, 0.8 to 1.8 m/s (turbulent flow region) were analyzed. The permeation fluxes increased with feed temperature and velocity. The effect of feed bulk temperature on the boundary layers' heat transfer coefficients was shown and fairly discussed. The temperature polarization coefficient increased with feed velocity and decreased with temperature. The values obtained were 0.56 to 0.82, indicating the effective heat transfer of the system. The fouling was observed during the 90 h experimental run in the application of natural ground water and seawater. The time dependent fouling resistance can be added in the total transport resistance.