• Title/Summary/Keyword: Membrane and graft material

Search Result 72, Processing Time 0.026 seconds

Transport Properties of Fluorinated Polyimide/PMMA-g-Silica Nanocomposite Membrane (PMMA가 그래프트된 실리카 나노입자를 포함한 불소계 폴리이미드 복합 분리막의 기체 투과 특성)

  • Kwon, Yu-Mi;Im, Hyun-Gu;Kim, Joo-Heon
    • Polymer(Korea)
    • /
    • v.34 no.1
    • /
    • pp.1-7
    • /
    • 2010
  • To enhance the transport properties of gas separation membrane, we prepared 6FDA-6FpDA based polyimide membrane with PMMA-graft-silica nanoparticles. The silica was grafted PMMA which is miscible with 6FDA-based polyimide after surface treatment by 3-methacryloxypropyltrimethoxysilane ($\gamma$-MPS). The untreated silica/6FDA-6FpDA membrane showed greater permeability and less selectivity than PMMA-g-silica/6FDA-6FpDA due to its low dispersion. The transport properties of PMMA-g-silica/6FDA-GFpDA membrane were measured as a function of filler concentration. These membranes were evaluated using pure gases (He, $O_2$, $N_2$, $CO_2$). The increase in permeation was attributed to changes in the free volume distribution until 1 wt%. After 1 wt%, the permeability was decreased by excess silica which decreased effective area in polymer matrix. The selectivity was decreased with increasing permeability on the whole. However, the selectivity of $CO_2$ showed more enhance value.

Histological comparison of different compressive forces on particulate grafts during alveolar ridge preservation: a prospective proof-of-concept study

  • Lee, Sung-Jo;Kang, Dae-Young;Cho, In-Woo;Shin, Hyun-Seung;Shin, Seung-Il;Fischer, Kai R.;Park, Jung-Chul
    • Journal of Periodontal and Implant Science
    • /
    • v.50 no.3
    • /
    • pp.197-206
    • /
    • 2020
  • Purpose: The aim of this study was to determine the impact of different compressive forces on deproteinized bovine bone mineral (DBBM) particles covered by native bilayer collagen membrane (NBCM) during alveolar ridge preservation (ARP) in the molar area, and to identify any histomorphometric and clinical differences according to the compressive force applied. Methods: Sockets were filled with DBBM after tooth extraction, and different compressive forces (30 N and 5 N, respectively) were applied to the graft material in the test (30 N) and control (5 N) groups. The DBBM in both groups was covered with NBCM in a double-layered fashion. A crossed horizontal mattress suture (hidden X) was then made. A core biopsy was performed using a trephine bur without flap elevation at the implant placement site for histomorphometric evaluations after 4 months. The change of the marginal bone level was measured using radiography. Results: Twelve patients completed the study. The histomorphometric analysis demonstrated that the mean ratios of the areas of new bone, residual graft material, and soft tissue and the implant stability quotient did not differ significantly between the groups (P>0.05). However, the mean size of the residual graft material showed a significant intergroup difference (P<0.05). Conclusions: The application of 2 compressive forces (5 N, 30 N) on particulate DBBM grafts during open-healing ARP in the posterior area led to comparable new bone formation, implant feasibility and peri-implant bone level.

The Effects of Calcium sulfate Membrane on the Periodontal Wound Repair of Horizontal Dehiscence defects in Dogs (성견 열개형 수평 결손부에서 Calcium Sulfate 차단막이 치주조직 치유에 미치는 영향)

  • Choi, Seong-Ho;Cho, Kyu-Sung;Moon, Ik-Sang;Chai, Jung-Kyu;Kim, Jong-Kwan
    • Journal of Periodontal and Implant Science
    • /
    • v.27 no.1
    • /
    • pp.249-262
    • /
    • 1997
  • The present study investigates the effects of calcium sulfate graft on the periodontal healing in intrabony periodontal defects of dogs. Following the general anesthesia with 30mg/kg pentobarbital injected intravenously, the first premolar was extracted and full-thickness periodontal flap was elevated from the second premolar to the fourth premolar. The portion of premolars coronal to the alveolar crest was removed and mesial and distal roots were separated. Exposed root canals were sealed with Caviton and covered completely with flaps sutured. Following the healing period of 12 weeks, the surgical sited were uncovered and $4{\times}4mm$ intrabony defects were surgically created. Those defects with calcium sulfate graft following the root planing was designated as the test sites and those with flap surgery-only were designated as control sites. The animals were sacrificed after 8 weeks and the healing was histologically analyzed. The results were as follows. 1. No foreign body reaction or inflammation were observed in either groups. Calcium sulfate was completely resorbed in the test sites. 2. New cementum was observed coronal to the notch in both groups. Connective tissue fibers were oriented parallel to the root surface in the controls. Connective tissues were formed in large amount in the sites. 3. Test sites showed marked amount of new bone formation while the control sites showed minimal bone gain. 4. Root resorption was observed in coronal portions of th control Sites. The results suggest that calcium sulfate is a biocompatible graft material with a potential for new bone and cementum formation.

  • PDF

Treatment of retrograde peri-implantitis: seven-year follow-up study (역행성 임플란트 근단병소 주위염(Retrograde Peri-implantitis) 치료의 7년 관찰)

  • Lee, Ju-Youn
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.30 no.3
    • /
    • pp.259-264
    • /
    • 2014
  • Retrograde peri-implantitis (RPI) is defined as a clinically symptomatic periapical lesion. RPI is generally accompanied by symptoms of pain, tenderness, swelling and fistula. Several etiologic factors of RPI were possible, residual bacteria would be the main cause of RPI. Various treatment modalities have been introduced: debridement only or a combination of debridement with the grafting material accompanied by a detoxification of the infected implant surfaces, apicoectomy and so on. Although the definitive management methods remain undefined, many favorable clinical results of a treatment of RPI have been published. This case report introduces the 7-year long-term clinical result of the application the principle: implant surface detoxification using saline and chlorhexidine and guided bone regeneration with bone graft material and barrier membrane. If the implant was not mobile, it would be possible to treat RPI according to surgical approach and good results will be maintained over long term.

Bone Formation Effect of the RGD-bioconjugated Mussel Adhesive Proteins Composite Hydroxypropyl Methylcellulose Hydrogel Based Nano Hydroxyapatite and Collagen Membrane in Rabbits

  • Kim, Dong-Myong;Kim, Hyun-Cho;Yeun, Chang-Ho;Lee, Che-Hyun;Lee, Un-Yun;Lim, Hun-Yu;Chang, Young-An;Kim, Young-Dae;Choi, Sung-Ju;Lee, Chong-Suk;Cha, Hyung Joon
    • Journal of Marine Bioscience and Biotechnology
    • /
    • v.7 no.2
    • /
    • pp.58-70
    • /
    • 2015
  • Injectable RGD-bioconjugated Mussel Adhesive Proteins (RGD-MAPs) composite hydroxypropyl methylcellulose (HPMC) hydrogels provide local periodontal tissue for bone filling in periodontal surgery. Previously we developed a novel type of injectable self-supported hydrogel (2 mg/ml of RGD-MAPs/HPMC) based porcine nano hydroxyapatite (MPH) for dental graft, which could good handling property, biodegradation or biocompatibility with the hydrogel disassembly and provided efficient cell adhesion activity and no inflammatory responses. Herein, the aim of this work was to evaluate bone formation following implantation of MPH and collagen membrane in rabbit calvarial defects. Eight male New Zealand rabbits were used and four circular calvarial defects were created on each animal. Defects were filled with different graft materials: 1) collagen membrane, 2) collagen membrane with MPH, 3) collagen membrane with bovine bone hydroxyapatite (BBH), and 4) control. The animals were sacrificed after 2 and 8 weeks of healing periods for histologic analysis. Both sites receiving MPH and BBH showed statistically increased augmented volume and new bone formation (p < 0.05). However, there was no statistical difference in new bone formation between the MPH, BBH and collagen membrane group at all healing periods. Within the limits of this study, collagen membrane with MPH was an effective material for bone formation and space maintaining in rabbit calvarial defects.

Maxillary sinus augmentation using biphasic calcium phosphate: dimensional stability results after 3-6 years

  • Cha, Jae-Kook;Kim, Chingu;Pae, Hyung-Chul;Lee, Jung-Seok;Jung, Ui-Won;Choi, Seong-Ho
    • Journal of Periodontal and Implant Science
    • /
    • v.49 no.1
    • /
    • pp.47-57
    • /
    • 2019
  • Purpose: This study was designed to observe the resorption pattern of biphasic calcium phosphate (BCP) used for maxillary sinus augmentation over a 3- to 6-year healing period, and to investigate factors affecting the resorption of BCP. Methods: A total of 47 implants placed in 27 sinuses of 22 patients were investigated. All patients had residual bone height less than 5 mm at baseline. The modified Caldwell-Luc approach was used to elevate the maxillary sinus membrane, and the sinus cavity was filled with BCP (70% hydroxyapatite and 30% ${\beta}$-tricalcium phosphate). Implant placement was done simultaneously or in a staged manner. Serial radiographic analysis was performed up to 6 years postoperatively. Results: During the follow-up period, no implant loss was reported. The mean reduced height of the augmented sinus (RHO) was $0.27{\pm}1.08mm$ at 36 months, and $0.89{\pm}1.39mm$ at 72 months postoperatively. Large amounts of graft material (P=0.021) and a long healing period (P=0.035) significantly influenced the amount of RHO. In particular, there was a significant relationship between a healing period longer than 40 months and RHO. Conclusions: BCP can achieve proper dimensional stability with minimal reduction of the graft height in a 3- to 6-year healing period after maxillary sinus augmentation. The healing period and the amount of graft material influenced the resorption of BCP.

HISTOMORPHOMETRIC ANALYSIS OF MAXILLARY SINUS AUGMENTATION WITH DEPROTEINIZED BOVINE BONE(BIO-$OSS^{(R)}$) AND VARIOUS ABSORBABLE MEMBRANE (탈단백 소뼈 기질과 다양한 종류의 흡수성 막을 이용한 상악동 거상술 후의 조직-형태학적 분석)

  • Jang, Tae-Hwa;Jang, Yoon-Je;Kwon, Tae-Geon;Lee, Sang-Han
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • v.33 no.6
    • /
    • pp.609-616
    • /
    • 2007
  • Purpose: The aim of the present study was to evaluate the effect of Bio-Oss on bone formation in terms of healing period and type of membrane so that determine the most suitable condition for implant fixation in grafted maxilla. Material & Method: Forty-five biopsy specimens from graft site were evaluated. Sinus lift was performed in the patients with reduced alveolar bone height(less than 5mm). The specimen was taken at the time of implant fixation, which was performed at least 5 months after the sinus lift procedure. All specimens were stained with H&E and Trichrome staining and evaluated histomorphometrically. Result: The results showed that Bio-Oss particle was in direct contact with newly formed bone in all cases. In the present study, the amount of newly formed bone and the residual bone substitute material were not statistically different according to various membrane and different healing period. There was no difference between the histological feature of the specimen of 5 and 31 months. No statistical significance was detected between male and female. Conclusion: The result implies that Bio-Oss does not seem to be resorbed over time regardless of the type of the membranes. The further investigation is needed to clarify this issue with the extended period of follow-up.

Effect of deproteinized bovine bone mineral on cell proliferation in the procedure of guided bone regeneration (골유도재생술시 탈단백 우골이 세포증식에 미치는 영향)

  • In, Young-Mi;Kwon, Young-Hyuk;Park, Joon-Bong;Herr, Yeek
    • Journal of Periodontal and Implant Science
    • /
    • v.34 no.3
    • /
    • pp.683-698
    • /
    • 2004
  • One of the bone substitutes now in routine use, deproteinized bovine bone mineral(DBBM), is regarded as resorbable and osteoconductive, but some studies refute this. The present study was performed to evaluate the effects of DBBM on guided bone regeneration using titanium membrane on the calvaria of rabbit. At 2 weeks, 4 weeks, 8 weeks, and 12 weeks after surgery, the animal was scrificed. Non-decalcified specimens were produced for histologic analysis. The results of this study were as follows : 1. Titanium membrane was biocompatible and capable of space-maintaining, but there was ingrowth of soft tissue through the pore of titanium membrane. 2. There was no resorption or reduction of DBBM with time. 3. Some of the DBBM particles were combined with newly formed bone. But, apart from host bone, a great part of the particles were surrounded by connective tissue. 4. The bone formation was slight vertically and restricted to superficial area of host bone. Whithin the above results, DBBM dose not appear to contribute to bone formation. DBBM may disturb the migration and proliferation of mesenchymal cell derived from host bone and increase the growth of connective tissue. Therefore, careful caution is needed on selection of bone graft material and surgical protocol at guided bone regeneration for implant placement.

Bone formation following dental implant placement with augmentation materials at dehiscence defects in dogs : pilot study (성견의 열개형 골결손 부위에 골형성 유도술식을 동반한 임플란트 식립 후의 골형성 : pilot study)

  • Jeong, Ji-Yun;Sohn, Joo-Yeon;Chai, Kyung-Jun;Kim, Sung-Tae;Chung, Sung-Min;Lee, In-Seop;Cho, Kyoo-Sung;Kim, Chong-Kwan;Choi, Seong-Ho
    • Journal of Periodontal and Implant Science
    • /
    • v.38 no.2
    • /
    • pp.191-198
    • /
    • 2008
  • Purpose: Guided bone regeneration(GBR) has emerged as a treatment in the management of osseous defects associated with dental implants. But several studies have reported different degrees of success of guided bone regeneration, depending upon the type of barrier selected, presence or absence of an underlying graft material, types of graft material, feasibility of technique, and clinician's preference. The aim of the present study was to evaluate bone formation following dental implant placement with augmentation materials at dehiscence defects in dogs. Material and Methods: Standardized buccal dehiscence defects($3{\times}5\;mm$) were surgically 2 Mongrel dog's mandibles, each 8 SLA surface, 8 anodizing surface implants. Each buccal dehiscence defect received flap surgery only(no treatment, control), $Cytoflex^{(R)}$ membrane only, Resolut $XT^{(R)}$ membrane only, Resolut $XT^{(R)}+Osteon^{TM}$. Animals were sacrificed at 8 weeks postsurgery and block sections were harvested for histologic analysis. Resuts: All experimental group resulted in higher bone formation than control. Resolut $XT^{(R)}+Osteon^{TM}$ group resulted appeared highest defect resolution. There was no difference between SLA and anodizing surface, nonresorbable and resorbable membrane. Conclusion: GBR results in rapid and clinically relevant bone closure on dehiscence defects of the dental implants.

Assessment of stem cell viability in the initial healing period in rabbits with a cranial bone defect according to the type and form of scaffold

  • Kang, Seung-Hwan;Park, Jun-Beom;Kim, InSoo;Lee, Won;Kim, Heesung
    • Journal of Periodontal and Implant Science
    • /
    • v.49 no.4
    • /
    • pp.258-267
    • /
    • 2019
  • Purpose: Increased bone regeneration has been achieved through the use of stem cells in combination with graft material. However, the survival of transplanted stem cells remains a major concern. The purpose of this study was to evaluate the viability of transplanted mesenchymal stem cells (MSCs) at an early time point (24 hours) based on the type and form of the scaffold used, including type I collagen membrane and synthetic bone. Methods: The stem cells were obtained from the periosteum of the otherwise healthy dental patients. Four symmetrical circular defects measuring 6 mm in diameter were made in New Zealand white rabbits using a trephine drill. The defects were grafted with 1) synthetic bone (${\beta}$-tricalcium phosphate/hydroxyapatite [${\beta}-TCP/HA$]) and $1{\times}10^5MSCs$, 2) collagen membrane and $1{\times}10^5MSCs$, 3) ${\beta}-TCP/HA+collagen$ membrane and $1{\times}10^5MSCs$, or 4) ${\beta}-TCP/HA$, a chipped collagen membrane and $1{\times}10^5MSCs$. Cellular viability and the cell migration rate were analyzed. Results: Cells were easily separated from the collagen membrane, but not from synthetic bone. The number of stem cells attached to synthetic bone in groups 1, 3, and 4 seemed to be similar. Cellular viability in group 2 was significantly higher than in the other groups (P<0.05). The cell migration rate was highest in group 2, but this difference was not statistically significant (P>0.05). Conclusions: This study showed that stem cells can be applied when a membrane is used as a scaffold under no or minimal pressure. When space maintenance is needed, stem cells can be loaded onto synthetic bone with a chipped membrane to enhance the survival rate.