• Title/Summary/Keyword: Membrane Protein Clustering

Search Result 10, Processing Time 0.027 seconds

Effects of Chlorpromazine·HCl on the Structural Parameters of Bovine Brain Membranes

  • Jang, Hye-Ock;Jeong, Dong-Keun;Ahn, Shin-Ho;Yoon, Chang-Dae;Jeong, Soo-Cheol;Jin, Seong-Deok;Yun, Il
    • BMB Reports
    • /
    • v.37 no.5
    • /
    • pp.603-611
    • /
    • 2004
  • Fluorescence probes located in different membrane regions were used to evaluate the effects of chlorpromazine HCl on structural parameters (transbilayer lateral mobility, annular lipid fluidity, protein distribution, and lipid bilayer thickness) of synaptosomal plasma membrane vesicles (SPMVs) isolated from bovine cerebral cortex. The experimental procedure was based on the selective quenching of 1,3-di(1-pyrenyl)propane (Py-3-Py) by trinitrophenyl groups, radiationless energy transfer from the tryptophan of membrane proteins to Py-3-Py, and energy transfer from Py-3-Py monomers to 1-anilinonaphthalene-8-sulfonic acid (ANS). In this study, chlorpromazine HCl decreased the lateral mobility of Py-3-Py in a concentration dependent-manner, showed a greater ordering effect on the inner monolayer than on the outer monolayer, decreased annular lipid fluidity in a dose dependent-manner, and contracted the membrane lipid bilayer. Furthermore, the drug was found to have a clustering effect on membrane proteins.

Effects of Dopamine.HCI on Structural Parameters of Bovine Brain Membranes

  • Bae, Moon-Kyoung;Huh, Min-Hoi;Lee, Seung-Woo;Kang, Hyun-Gu;Pyun, Jae-Ho;Kwak, Myeong-Hee;Jang, Hye-Ock;Yun, Il
    • Archives of Pharmacal Research
    • /
    • v.27 no.6
    • /
    • pp.653-661
    • /
    • 2004
  • Fluorescence probes located in different membrane regions were used to evaluate the effect of dopamine$.$HCI on the structural parameters (transbilayer lateral mobility, annular lipid fluidity, protein distribution, and thickness of the lipid bilayer) of synaptosomal plasma membrane vesicles (SPMV), which were obtained from the bovine cerebral cortex. An experimental procedure was used based on selective quenching of 1,3-di(1-pyrenyl)propane (Py-3-Py) by trinitrophenyl groups, and radiationless energy transfer from the tryptophan of membrane pro-teins to Py-3-Py and energy transfer from Py-3-Py monomers to 1-anilinonaphthalene-8-sulfonic acid (ANS) was also utilized. Dopamine$.$HCI increased both the bulk lateral mobility and annular lipid fluidity, and it had a greater fluidizing effect on the inner monolayer than on the outer monolayer. Furthermore, the drug had a clustering effect on membrane proteins.

Diffusion-based determination of protein homodimerization on reconstituted membrane surfaces

  • Jepson, Tyler A.;Chung, Jean K.
    • BMB Reports
    • /
    • v.54 no.3
    • /
    • pp.157-163
    • /
    • 2021
  • The transient interactions between cellular components, particularly on membrane surfaces, are critical in the proper function of many biochemical reactions. For example, many signaling pathways involve dimerization, oligomerization, or other types of clustering of signaling proteins as a key step in the signaling cascade. However, it is often experimentally challenging to directly observe and characterize the molecular mechanisms such interactions-the greatest difficulty lies in the fact that living cells have an unknown number of background processes that may or may not participate in the molecular process of interest, and as a consequence, it is usually impossible to definitively correlate an observation to a well-defined cellular mechanism. One of the experimental methods that can quantitatively capture these interactions is through membrane reconstitution, whereby a lipid bilayer is fabricated to mimic the membrane environment, and the biological components of interest are systematically introduced, without unknown background processes. This configuration allows the extensive use of fluorescence techniques, particularly fluorescence fluctuation spectroscopy and single-molecule fluorescence microscopy. In this review, we describe how the equilibrium diffusion of two proteins, K-Ras4B and the PH domain of Bruton's tyrosine kinase (Btk), on fluid lipid membranes can be used to determine the kinetics of homodimerization reactions.

The Effect of Dibucaine.HCl on the Physical Properties of Neuronal Membranes

  • Jang, Hye-Ock;Hyun, Cheol-Ho;Yoon, Jin-Hyeok;Kang, Yong-Gyu;Park, Sung-Min;Park, Young-Sik;Park, Jun-Seop;Ok, Jin-Seok;Lee, Dong-Hun;Bae, Moon-Kyung;Yun, Il
    • Journal of Photoscience
    • /
    • v.12 no.2
    • /
    • pp.67-73
    • /
    • 2005
  • Fluorescent probe techniques were used to evaluate the effect of dibucaine.HCl on the physical properties (transbilayer asymmetric lateral mobility, annular lipid fluidity and protein distribution) of synaptosomal plasma membrane vesicles (SPMV) isolated from bovine cerebral cortex. An experimental procedure was used based on selective quenching of 1,3-di(l-pyrenyl)propane (Py-3-Py) by trinitrophenyl groups, and radiationless energy transfer from the tryptophans of membrane proteins to Py-3-Py. Dibucaine.HCl increased the bulk lateral mobility, and annular lipid fluidity in SPMV lipid bilayers, and had a greater fluidizing effect on the inner monolayer than the outer monolayer. The magnitude of increasing effect on annular lipid fluidity in SPMV lipid bilayer induced by dibucaine.HCl was significantly far greater than magnitude of increasing effect of the drug on the lateral mobility of bulk SPMV lipid bilayer. It also caused membrane proteins to cluster. These effects of dibucaine.HCl on neuronal membranes may be responsible for some, though not all, of the local anesthetic actions of dibucaine.HCl.

  • PDF

The Effect of Ethanol on the Physical Properties of Neuronal Membranes

  • Bae, Moon-Kyoung;Jeong, Dong-Keun;Park, No-Soo;Lee, Cheol-Ho;Cho, Bong-Hye;Jang, Hye-Ock;Yun, Il
    • Molecules and Cells
    • /
    • v.19 no.3
    • /
    • pp.356-364
    • /
    • 2005
  • Intramolecular excimer formation of 1,3-di(1-pyrenyl) propane(Py-3-Py) and fluorescence polarization of 1,6-diphenyl-1,3,5-hexatriene (DPH) were used to evaluate the effect of ethanol on the rate and range of lateral and rotational mobilities of bulk bilayer structures of synaptosomal plasma membrane vesicles (SPMVs) from the bovine cerebral cortex. Ethanol increased the excimer to monomer fluorescence intensity ratio (I'/I) of Py-3-Py in the SPMVs. Selective quenching of both DPH and Py-3-Py by trinitrophenyl groups was used to examine the range of transbilayer asymmetric rotational mobility and the rate and range of transbilayer asymmetric lateral mobility of SPMVs. Ethanol increased the rotational and lateral mobility of the outer monolayer more than of the inner one. Thus ethanol has a selective fluidizing effect within the transbilayer domains of the SPMVs. Radiationless energy transfer from the tryptophans of membrane proteins to Py-3-Py was used to examine both the effect of ethanol on annular lipid fluidity and protein distribution in the SPMVs. Ethanol increased annular lipid fluidity and also caused membrane proteins to cluster. These effects on neuronal membranes may be responsible for some, though not all, of the general anesthetic actions of ethanol.

Analysis of the Molecular Event of ICAM-1 Interaction with LFA-1 During Leukocyte Adhesion Using a Reconstituted Mammalian Cell Expression Model

  • Han, Weon-Cheol;Kim, Kwon-Seop;Park, Jae-Seung;Hwang, Sung-Yeoun;Moon, Hyung-Bae;Chung, Hun-Taeg;Jun, Chang-Duk
    • Animal cells and systems
    • /
    • v.5 no.3
    • /
    • pp.253-262
    • /
    • 2001
  • Ligand-receptor clustering event is the most important step in leukocyte adhesion and spreading on endothelial cells. Intercellular adhesion molecule-1 (ICAM-1) has been shown to enhance leukocyte adhesion, but the molecular event during the process of adhesion is unclear. To visualize the dynamics of ICAM-1 movement during adhesion, we have engineered stable Chinese hamster ovary cell lines expressing ICAM-1 fused to a green fluorescent protein (IC1_GFP/CHO) and examined them under the fluorescence microscopy. The transfection of IC1_GFP alone in these cells was sufficient to support the adhesion of K562 cells that express $\alpha$L$\beta$2 (LFA-1) integrin stimulated by CBR LFA-1/2 mAb. This phenomenon was mediated by ICAM-1-LFA-1 interactions, as an mAb that specifically inhibits ICAM-1-LFA-1 interaction (RRl/l) completely abolished the adhesion of LFA-1* cells to IC1_ GFP/CHO cells. We found that the characteristic of adhesion was followed almost immediately (~10 min) by the rapid accumulation of ICAM-1 on CHO cells at a tight interface between the two cells. Interestingly, ICI_GFP/CHO cells projected plasma membrane and encircled approximately half surface of LFA-1+ cells, as defined by confocal microscopy. This unusual phenomenon was also confirmed on HUVEC after adhesion of LFA-1* cells. Neither cytochalasin D nor 2,3-butanedione 2-monoxime an inhibitor of myosin light chain kinase blocked LFA-1-mediated ICAM-1 clustering, indicating that actin cytoskeleton and myosin-dependent contractility are not necessary for ICAM-1 clustering. Taken together, we suggest that leukocyte adhesion to endothelial cells induces specialized form of ICAM-1 clustering that is distinct from immunological synapse mediated by T cell interaction with antigen presenting cells.

  • PDF

The Effect of Lidocaine.HCl on the Fluidity of Native and Model Membrane Lipid Bilayers

  • Park, Jun-Seop;Jung, Tae-Sang;Noh, Yang-Ho;Kim, Woo-Sung;Park, Won-Ick;Kim, Young-Soo;Chung, In-Kyo;Sohn, Uy Dong;Bae, Soo-Kyung;Bae, Moon-Kyoung;Jang, Hye-Ock;Yun, Il
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.16 no.6
    • /
    • pp.413-422
    • /
    • 2012
  • The purpose of this study is to investigated the mechanism of pharmacological action of local anesthetic and provide the basic information about the development of new effective local anesthetics. Fluorescent probe techniques were used to evaluate the effect of lidocaine HCl on the physical properties (transbilayer asymmetric lateral and rotational mobility, annular lipid fluidity and protein distribution) of synaptosomal plasma membrane vesicles (SPMV) isolated from bovine cerebral cortex, and liposomes of total lipids (SPMVTL) and phospholipids (SPMVPL) extracted from the SPMV. An experimental procedure was used based on selective quenching of 1,3-di(1-pyrenyl)propane (Py-3-Py) and 1,6-diphenyl-1,3,5-hexatriene (DPH) by trinitrophenyl groups, and radiationless energy transfer from the tryptophans of membrane proteins to Py-3-Py. Lidocaine HCl increased the bulk lateral and rotational mobility of neuronal and model membrane lipid bilayes, and had a greater fluidizing effect on the inner monolayer than the outer monolayer. Lidocaine HCl increased annular lipid fluidity in SPMV lipid bilayers. It also caused membrane proteins to cluster. The most important finding of this study is that there is far greater increase in annular lipid fluidity than that in lateral and rotational mobilities by lidocaine HCl. Lidocaine HCl alters the stereo or dynamics of the proteins in the lipid bilayers by combining with lipids, especially with the annular lipids. In conclusion, the present data suggest that lidocaine, in addition to its direct interaction with proteins, concurrently interacts with membrane lipids, fluidizing the membrane, and thus inducing conformational changes of proteins known to be intimately associated with membrane lipid.

Distinct Regional and Cellular Localization of Hyperpolarization-activated Cyclic Nucleotide-gated Channel 1 in Cerebellar Cortex of Rat

  • Kwon, Young-Joon;Kim, Tae-Sung
    • Journal of Korean Neurosurgical Society
    • /
    • v.42 no.3
    • /
    • pp.205-210
    • /
    • 2007
  • Objective : Hyperpolarization-activated cyclic nucleotide-gated (HCN) channels mediate the hyperpolarization-activated currents (Ih) that participate in regulating neuronal membrane potential and contribute critically to pacemaker activity, promoting synchronization of neuronal networks. However, distinct regional and cellular localization of HCN channels in the brain have not been precisely defined. Aim of this study was to verify the precise cellular location of HCN1 channels in rat cerebellum to better understand the physiological role these channels play in synaptic transmission between CNS neurons. Methods : HCN1 expression in rat brain was analyzed using immunohistochemistry and electron-microscopic observations. Postsynaptic density-95 (PSD-95), otherwise known as locating and clustering protein, was also examined to clarify its role in the subcellular location of HCN1 channels. In addition, to presume the binding of HCN1 channels with PSD-95, putative binding motifs in these channels were investigated using software-searching method. Results : HCN1 channels were locally distributed at the presynaptic terminal of basket cell and exactly corresponded with the location of PSD-95. Moreover, nine putative SH3 domain of PSD-95 binding motifs were discovered in HCN1 channels from motif analysis. Conclusion : Distinct localization of HCN1 channels in rat cerebellum is possible, especially when analyzed in conjunction with the SH3 domain of PSD-95. Considering that HCN1 channels contribute to spontaneous rhythmic action potentials, it is suggested that HCN1 channels located at the presynaptic terminal of neurons may play an important role in synaptic plasticity.

The Effect of Methanol on the Structural Parameters of Neuronal Membrane Lipid Bilayers

  • Joo, Hyung-Jin;Ahn, Shin-Ho;Lee, Hang-Rae;Jung, Sung-Woo;Choi, Chang-Won;Kim, Min-Seok;Bae, Moon-Kyoung;Chung, In-Kyo;Bae, Soo-Kyoung;Jang, Hye-Ock;Yun, Il
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.16 no.4
    • /
    • pp.255-264
    • /
    • 2012
  • The structures of the intact synaptosomal plasma membrane vesicles (SPMVs) isolated from bovine cerebral cortexs, and the outer and the inner monolayer separately, were evaluated with 1,6-diphenyl-1,3,5-hexatriene (DPH) and 1,3-di(1-pyrenyl)propane (Py-3-Py) as fluorescent reporters and trinitrophenyl groups as quenching agents. The methanol increased bulk rotational and lateral mobilities of SPMVs lipid bilayers. The methanol increased the rotational and lateral mobilities of the outer monolayers more than of the inner monolayers. n-(9-Anthroyloxy)stearic acid (n-AS) were used to evaluate the effect of the methanol on the rotational mobility at the 16, 12, 9, 6, and 2 position of aliphatic chains present in phospholipids of the SPMVs outer monolayers. The methanol decreased the anisotropy of the 16-(9-anthroyloxy)palmitic acid (16-AP), 12-(9-anthroyloxy)stearic acid (12-AS), 9-(9-anthroyloxy)stearic acid (9-AS), and 6-(9-anthroyloxy)stearic acid (6-AS) in the SPMVs outer monolayer but it increased the anisotropy of 2-(9-anthroyloxy)stearic acid (2-AS) in the monolayers. The magnitude of the increased rotational mobility by the methanol was in the order at the position of 16, 12, 9, and 6 of aliphatic chains in phospholipids of the outer monolayers. Furthermore, the methanol increased annular lipid fluidity and also caused membrane proteins to cluster. The important finding is that was far greater increase by methanol in annular lipid fluidity than increase in lateral and rotational mobilities by the methanol. Methanol alters the stereo or dynamics of the proteins in the lipid bilayers by combining with lipids, especially with the annular lipids. In conclusion, the present data suggest that methanol, in additions to its direct interaction with proteins, concurrently interacts with membrane lipids, fluidizing the membrane, and thus inducing conformational changes of proteins known to be intimately associated with membranes lipids.

Effects of Membrane-filtered Powder of Sunmul on the Quality Characteristics of Noodles (막분리한 순물의 농축분말 첨가가 국수의 품질에 미치는 영향)

  • Chung, Hai-Jung;Choi, Min-Hee;Kim, Woo-Jung
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.35 no.2
    • /
    • pp.199-204
    • /
    • 2006
  • This study was conducted to investigate the quality characteristics of noodles prepared with the addition of nanofiltered (NF) powder of sunmul. Noodles were prepared with different levels $(0\%,\;1.5\%,\;3\%\;and\;5\%,\;w/w)$ of NF powder and physico-chemical properties were examined. Results of rapid visco analyzer showed that peak, trough, final viscosity and set back decreased as the NF powder level increased. The weight and volume of cooked noodles increased with the addition of NF powder. Turbidity of soup also increased as the amount of NF powder increased, indicating higher cooking loss. The color of wet and cooked noodles became greenish yellow as the NF powder level increased. Hardness, springiness, gumminess and brittleness of cooked noodles decreased with the increasing amount of NF powder. Results of sensory evaluation showed that noodles prepared with up to $3\%$ addition of NF powder was considered to be as acceptable as noodles prepared without NF powder.