• 제목/요약/키워드: Membrane Filter Press

검색결과 19건 처리시간 0.023초

혐기소화폐액의 응집제 특성에 따른 멤브레인 필터프레스의 고액분리 특성 (Solid-liquid Separation Characteristics of Membrane Filter Press according to Coagulant Properties of Anaerobic Digestion Waste Water)

  • 한성국;정희숙;송형운;김호;안대현
    • 유기물자원화
    • /
    • 제22권3호
    • /
    • pp.23-32
    • /
    • 2014
  • 최근 들어 유기성폐기물의 혐기소화를 이용한 처리(에너지화)가 증가하고 있다. 이에 따라서 혐기소화 후 발생하는 혐기소화폐액의 처리방안에 대한 연구도 증가하고 있다. 그러나, 혐기소화폐액의 특성상 문제로 고액분리에 매우 어려움이 있다.이에 본 연구에서는 CST와 TTF를 이용하여 혐기소화폐액에 대한 응집에 따른 고액분리 특성을 파악하였다. 또한 이러한 문제를 해결하기 위하여 실험실수준의 멤브레인 필터프레스를 제작하고, 혐기소화폐액에 적용하였다. 고분자 응집제는 7192PLUS와 1T60가 가장 적합한 것으로 확인되었으며, 최소 7192PLUS (200 mg/L), 1T60 (100 mg/L)이상의 투입이 필요하였다. 탈수효율을 평가하기 위하여 탈수케이크의 함수율과 탈리여액의 입자성 고형물을 이용하였다. 결과적으로, 멤브레인 필터프스를 이용하여 고액분리 시 입자성 고형물의 제거효율은 97.4%로 높게 나타났으며, 탈수케이크의 함수율은 65%이하로 나타났다.

Self-forming dynamic membrane formed on mesh filter coupled with membrane bioreactor at different sludge concentrations

  • Rezvani, Fariba;Mehrnia, Mohammad Reza
    • Membrane and Water Treatment
    • /
    • 제9권4호
    • /
    • pp.255-262
    • /
    • 2018
  • This study attempted to evaluate the process of self-forming dynamic membrane formation on mesh filter in membrane bioreactor with a two-stage method of batch (agitation) and continues (aeration) stage at different sludge concentrations. Four concentrations of activated sludge including $6{\pm}0.4$, $8{\pm}0.5$, $10{\pm}0.3$, $14{\pm}0.3g/L$ were used to demonstrate the optimal concentration of sludge for treating municipal wastewater and reducing fouling in dynamic membrane bioreactor. The formation time and effluent turbidity were decreased in the batch stage when increasing the activated sludge concentration. The minimum values of formation time and effluent turbidity were 14 min and 43 NTU for the optimum mixed liqueur suspended solids of $8{\pm}0.5g/L$, respectively. To improve operational condition and fouling reduction in the aeration stage, critical fluxes were measured for all concentrations by flux-step method. With increasing the sludge concentration, the relevant critical fluxes reduced. The optimum subcritical flux of $30L/m^2/h$ was applied as operating flux in the second stage. The maximum COD removal efficiency of 98% was achieved by the concentration of $8{\pm}0.5g/L$. Compressibility index of self-forming dynamic membrane and transmembrane pressure trend remained somewhat constant until the optimal concentration of $8{\pm}0.5g/L$ and thereafter they increased steeply.

열안정 공기 여과막용 폴리페닐렌 설파이드 원단과 폴리테트라플루오로에틸렌 필름 사이의 접착력 향상 (Enhancing Adhesion between Polyphenylene Sulfide Fabric and Polytetrafluoroethylene Film for Thermally Stable Air Filtration Membrane)

  • 김진욱;손혜정;강상훈;이창수
    • 멤브레인
    • /
    • 제33권4호
    • /
    • pp.201-210
    • /
    • 2023
  • 먼지 필터 막은 인간의 건강, 안전 및 환경 보호의 몇 가지 중요한 측면에 기여하기 때문에 인간의 삶과 다양한 산업에서 중요한 역할을 한다. 이 연구는 고온 조건에 대한 우수한 열안정성과 접착 특성을 가진 polysulfone@polyphenylene sulfide/polytetrafluoroethylene (PSf@PPS/ePTFE) 복합 먼지 필터 막의 개발을 제시한다. FT-IR 분석은 PSF 접착제가 PPS 직물에 성공적으로 함침되고 ePTFE 지지체와의 상호 작용을 확인한다. FE-SEM 이미지는 향상된 섬유 상호 연결 및 PSf 농도와 함께 접착력을 보여준다. PSf@PPS/ePTFE-5는 가장 적합한 다공성 구조를 보여준다. 복합 막은 400℃까지 예외적인 열 안정성을 보여준다. 박리 저항 테스트는 먼지 여과에 대한 충분한 접착력을 보여 공기 투과성을 희생시키지 않고 힘든 고온조건에서 신뢰할 수 있는 성능을 보장한다. 이 막은 산업 응용 분야에서 유망한 잠재력을 제공한다. 더 나아가 최적화 및 응용 가능성을 탐구할 수 있다.

A laboratory study on synthetic fiber filter for further treatment of turbid stormwater from construction sites

  • Yuan, Qingke;Kim, Youngchul
    • Membrane and Water Treatment
    • /
    • 제10권2호
    • /
    • pp.105-112
    • /
    • 2019
  • On the purpose of conform the more stringent government regulation for turbid stormwater from construction sites, the feasibility and availability of synthetic fiber placing after the conventional protection barrier were tested in this study. Initially, comparative work on the filtering performance of fiber media and conventional gravel filter was carried out, 27% higher filtration capacity was obtained under the similar operational conditions. The filter efficiency was about 20 to 52% with a varying filter depth of 5 to 15cm, presuming at extreme storm flow conditions (800-1500 m/day of filtration rates). Fiber filter was found to have a similar filtration prosperity as grain media; namely, the separation efficiency is directly and inversely proportional to filter depth and rate, respectively. The effects of filter aid (polyaluminium chloride) on filter performance was also investigated, it greatly affected the turbidity reduction at the dosage of 2 mg/L. At the time of breakthrough, a simple filter washing was carried out, herein, the solid recovery achieved over than 88% and greatly determined by operational parameters. Based on the operational data, the empirical models aimed for predicting filtration efficiency were established, which can effectively determine the required filter depth and filtration area in field.

Infiltration characteristic of modified slurry and support efficiency of filter cake in silty sand strata

  • Sai Zhang;Jianwen Ding;Ning Jiao;Shuai Sun;Jinyu Liu
    • Geomechanics and Engineering
    • /
    • 제34권2호
    • /
    • pp.125-138
    • /
    • 2023
  • To improve the understanding of infiltration characteristic of modified slurry and the support efficiency of filter cake in silty sand strata, the slurry infiltration (SI) and filter cake formation (FCF) were investigated in a laboratory apparatus. The water discharge and the excess pore pressure at different depths of silty sand strata were measured during SI. The relationship between permeability coefficient/thickness ratio of filter cake (kc/ΔL) and effective slurry pressure conversion rate of filter cake (η) were analyzed. Moreover, the SI and FCF process as well as the modification mechanism of CMC (carboxymethyl cellulose) were clarified. The experimental results indicate the formation of only external filter cake in the silty sand strata. The slurry particles obtain thicker water membrane after being modified by CMC, which blocks partial water path in filter cake and decreases the water discharge significantly. The silty sand excavated from tunnel face also contributes to the water discharge reduction. The kc of the external filter cake ranges from 3.83×10-8 cm/s to 7.44×10-8 cm/s. The η of the external filter cake is over 96%, which decreases with increasing kc/ΔL. A silty sand content within 10% is suggested during construction to ensure the uniformity of the filter cake.

Performance improvement of membrane distillation using carbon nanotubes

  • Kim, Seung-Hyun;Lee, Tae-Min
    • Membrane and Water Treatment
    • /
    • 제7권4호
    • /
    • pp.367-375
    • /
    • 2016
  • Although the bucky paper (BP) made from carbon nanotubes (CNTs) possesses beneficial characteristics of hydrophobic nature and high porosity for membrane distillation (MD) application, weak mechanical strength of BP has often prevented the stable operation. This study aims to fabricate the BP with high mechanical strength to improve its MD performance. The strategy was to increase the purity level of CNTs with an assumption that purer CNTs would increase the Van der Waals attraction, leading to the improvement of mechanical strength of BP. According to this study results, the purification of CNT does not necessarily enhance the mechanical strength of BP. The BP made from purer CNTs demonstrated a high flux ($142kg/m^2{\cdot}h$) even at low ${\Delta}T$ ($50^{\circ}C$ and $20^{\circ}C$) during the experiments of direct contact membrane distillation (DCMD). However, the operation was not stable because a crack quickly formed. Then, a support layer of AAO (anodic aluminum oxide) filter paper was introduced to reinforce the mechanical strength of BP. The support reinforcement was able to increase the mechanical strength, but wetting occurred. Therefore, the mixed matrix membrane (PSf-CNT) using CNTs as filler to polysulphone was fabricated. The DCMD operation with the PSf-CNT membrane was stable, although the flux was low ($6.1kg/m^2{\cdot}h$). This result suggests that the mixed matrix membrane could be more beneficial for the stable DCMD operation than the BP.

A column study of effect of filter media on the performance of sand filter

  • Kim, Tae-hoon;Oh, Heekyong;Eom, Jungyeol;Park, ChulHwi
    • Membrane and Water Treatment
    • /
    • 제11권4호
    • /
    • pp.247-255
    • /
    • 2020
  • Sand filter is a key unit process for particle removal in water purification treatments. Its long-standing use is due to on-site customized retrofit. Proper selection of filter media is one of the retrofit approaches to improve filter performance. This study described a series of controlled laboratory column tests and examined the effects of media property on filtration and backwash. When sand media of 0.51 mm in effective size was replaced by sand of 0.60 mm, the filter run increased up to 5 times in the given bed depth. The change of media property required an increase of backwash rate by 0.05 m/min to satisfy the requirement of bed expansion, more than 20%. When the anthracite was changed with lower effective size and uniformity coefficient, correlation with sand in the filter bed could be satisfied within the permissible error between media and bulk characteristics. Besides, this selection resulted in a well-stratified configuration of media layers after bed expansion. The column study showed that the correlation of property between the dual media had a significant effect on the filter productivity and backwash interval.

TPU 재질을 적용한 다목적 고액분리 모듈의 여과판 구조해석 (Structural Analysis of TPU Membrane Plate in Multi-purpose Module for Solid-liquid Separation)

  • 정희숙;오두영;고동신;송형운
    • 유기물자원화
    • /
    • 제25권1호
    • /
    • pp.5-13
    • /
    • 2017
  • 기존 국내 여과판의 재질은 주로 polypropylene 소재의 여과판을 사용하였으며 그 이유는 성형성이 좋고, 가격이 저렴하며 매우 보편적으로 보급된 소재이기 때문이다. 그러나 고압에 의해 한번 뒤틀려진 polypropylene 소재 여과판은 재사용이 어려우며 가압형 고액분리모듈의 연속 운전에 문제를 야기할 수 있다. 따라서 기존 polypropylene 소재보다 성능이 뛰어난 TPU(Thermoplastic Poly Urethane) 소재개발을 위해 새로운 소재에 대해 설계된 여과판의 구조적 안정성을 해석적 기법을 통해 예측하였다. 20 bar의 압력하중 하에서 TPU를 적용한 여과판은 최대 변형량이 27.85 MPa로 나타났으며 이 값은 TPU 응력-변형률(Stress-Strain) 한계치 이하 값으로 여과판 재질에 대한 구조적 안정성을 확보하였다.

Assessing the removal efficiency of Synedra sp. through analysis of field data from water treatment plants

  • Seo, Dae-Keun;Kim, Yeong-Kwan
    • Membrane and Water Treatment
    • /
    • 제11권2호
    • /
    • pp.141-149
    • /
    • 2020
  • Prechlorination could increase the removal efficiency of Synedra, but there was no significant effect of increasing the amount of chlorine added. However, a removal efficiency of greater than 80% was noted when ozone was injected at concentrations greater than 2 mg/L. Also, it was found that on addition of polyamine, a removal efficiency of 80% or more could be achieved. As a result of the analysis of field operation data from the water treatment plants G and B, it was found that at water treatment plant G, the filter run time decreased to 10 hours or less when only coagulant was injected, but the filter run time increased to around 40 hours when polyamine (3 mg/L) was also injected. The Synedra population in the raw water subsequently increased to 2,340 cells/mL, and the filter continued running for more than 20 hours. At water treatment plant B, the average Synedra removal efficiency was 56% when only coagulant was injected, and the filter run time decreased drastically with the increasing population of Synedra in the raw water. However, the removal efficiency of Synedra reached 79% when polyamine was injected together with the coagulant, 90% when ozone was also injected, and 95% when polyamine and ozone were injected together and the filter continued running for over 50 hours. The filter run time was maintained at 60 hours when a Synedra population of 6,890 cells/mL flowed into the Paldang water source, but the filter run time with Synedra at 1,960 cells/mL decreased rapidly from 65 hours to 35 hours when the ratio of the size of the individual Synedra reaching 250 ㎛ or more, increased from 38% to 94%. Therefore, the size of the Synedra is considered to be a factor that significantly influences filter clogging, as well as the size of the Synedra population.

Prussian blue immobilization on various filter materials through Layer-by-Layer Assembly for effective cesium adsorption

  • Wi, Hyobin;Kim, Hyowon;Kang, Sung-Won;Hwang, Yuhoon
    • Membrane and Water Treatment
    • /
    • 제10권3호
    • /
    • pp.245-250
    • /
    • 2019
  • Prussian blue (PB) is well known for its excellent $Cs^+$ ions adsorption capacity. Due to the high dispersibility of PB in aqueous phase, composite materials imbedding PB in supporting materials have been introduced as a solution. However, building PB particles inside porous supporting materials is still difficult, as PB particles are not fully formed and elute out to water. In this study, we suggest layer-by-layer (LBL) assembly to provide better immobilization of PB on supporting materials of poly vinyl alcohol sponge (PVA) and cellulose filter (CF). Three different PB attachment methods, ex-situ/in-situ/LBL assembly, were evaluated using PB leaching test as well as $Cs^+$ adsorption test. Changes of surface functionality and morphology during PB composite preparation protocols were monitored through Fourier transform infrared spectroscopy and scanning electron microscopy. The results indicate that LBL assembly led to better PB attachment on supporting materials, bringing less eluting PB particles in aqueous phase compared to other synthesis methodologies, such as ex-situ and in-situ synthesis. By enhancing the stability of the adsorbent, adsorption capacity of PVA-PB with LBL improved nine times and that of CF-PB improved over 20 times. Therefore, the results suggest that LBL assembly offers a better orientation for growing PB particles on porous supporting materials.