• 제목/요약/키워드: Membrane Electrolyte Assembly(MEA)

검색결과 62건 처리시간 0.024초

나노고분자막 구조의 이온투과 특성에 관한 연구 (A Study on the Ion Permeability Characteristics in Nano-Polymer Membrane Structures)

  • 김유영
    • 한국공작기계학회논문집
    • /
    • 제15권1호
    • /
    • pp.133-137
    • /
    • 2006
  • Ion permeability characteristics in nano-polymer membrane structures are performed to investigate the chemical composition and characteristics of MEA(Membrane Electrolyte Assembly) which is one of the most important parts to decide the performance in PEMFC(Polymer Electrolyte Membrane Fuel Cell) system. Subsequently, the MEA manufacturing process is presented for the uniformed MEA product. In the meantime, the analysis of SEM(Scanning Electron Microscope) is carried out in order to investigate the joint aspect and chemical composition of MEA. As a result of SEM analysis, it is found that the bonded catalyst and carbon composition contain the reasonable amount to get unit cell output. It is also found that the humidification gives the better performance result slightly.

고분자전해질형 연료전지의 성능해석 및 효율에 관한 연구 (TA Study on the Performance and the Efficiency in Polymer Electrolyte embrane Fuel Cell)

  • 김홍건;김유신;양성모;나석찬
    • 한국공작기계학회논문집
    • /
    • 제14권4호
    • /
    • pp.75-80
    • /
    • 2005
  • An experimental study is carried out to investigate the performance and the efficiency humidifying Membrane Electrolyte Assembly and having the double-tied catalyst layers in a fuel cell system which is taken into account the physical and thermal concept. Subsequently, an electric output produced by PEMFC(Polymer Electrolyte Membrane Fuel Cell) is measured to assess the performance of a stack, and the efficiency is also evaluated according to the different situation in which unit cell is placed with and without the humidification of the MEA. It is found that the measured values of stack voltage and current are influenced by the stack temperature, humidification, and the double-tied catalyst layers which give more enhanced values to be applied to electric units.

PEFC 막-전극 접합체의 설계 및 효율에 관한 연구 (A Study on the Design and Efficiency of Membrane-Electrolyte Assembly in PEFC)

  • 김홍건;김유신;김홍열;양성모;나석찬
    • 한국공작기계학회:학술대회논문집
    • /
    • 한국공작기계학회 2005년도 춘계학술대회 논문집
    • /
    • pp.180-184
    • /
    • 2005
  • An experimental study is performed to evaluate the performance and the efficiency by humidifying MEA and by making the double-tied catalyst layers in a fuel cell system which is taken into account the physical and thermal concept. An electrical output produced by PEFC(polymer Electrolyte Fuel Cell) is measured to assess the performance of the stack and the efficiency is also evaluated according to the different situation in which is placed with and without the humidification of MEA (Membrane Electrolyte Assembly). Subsequently, It is found that the measured values of stack voltage and current are influenced by the stack temperature, humidification, and the double-tied catalyst layers which gives more enhanced values to apply for electric units.

  • PDF

그린수소 생산을 위한 고성능 고분자 전해질막 전해조 개발 연구 (Developing High-Performance Polymer Electrolyte Membrane Electrolytic Cell for Green Hydrogen Production)

  • Choi, Baeck Beom;Jo, Jae Hyeon;Lee, Yae Rin;Kim, Jungsuk;Lee, Taehee;Jeon, Sang-Yun;Yoo, Young-Sung
    • KEPCO Journal on Electric Power and Energy
    • /
    • 제7권1호
    • /
    • pp.137-143
    • /
    • 2021
  • As an electrochemical water electrolysis for green hydrogen production, both polymer electrolyte membrane (PEM) and alkaline electrolyte are being developed extensively in various countries. The PEM electrolyzer with high current density (above 2 A/cm2) has the advantage of being able to design a simple structure. Also, it is known that it has high response to electrical output fluctuations. However, the cost problem of major components is the most important issue that a PEM electrolyzer must overcome. Instantly, there are platinum group metal (PGM)-based electrocatalysts, fluorine-based polyfluoro sulfuric acid (PFSA) membrane, Ti felt (porous transport layer, PTL) and so on. Another challenging issue is productivity. A securing outstanding productivity brings price benefits of the electrolytic cells. From this point of view, we conducted basic studies on manufacturing electrode and membrane electrode assembly (MEA) for PEM electrolyzer production.

고분자 전해질막 연료전지의 활성화를 위한 CV 활성화법 (Application of CV Cycling to the Activation of the Polymer Electrolyte Membrane Fuel Cell)

  • 조기윤;정호영
    • 공업화학
    • /
    • 제23권5호
    • /
    • pp.445-449
    • /
    • 2012
  • 고분자 전해질막 연료전지의 대량 생산을 위하여 막-전극 접합체(MEA) 활성화 방법의 개발이 중요한 현안이다. 현재 개발된 MEA활성화 방법은 시간이 많이 소요됨으로 인해 수소의 사용량 또한 증가하여 연료전지의 상용화에 큰 걸림돌이 되고 있다. 통상적인 활성화 방법은 활성화 원리를 주로 전해질 수화 관점에서 이해하였다. 반면, 본 논문에서 제안된 순환전압전류(cyclic voltammetry, CV) 활성화 방법은 전해질 및 촉매적 관점에서 별도로 분리하여 이해하였다. 따라서 전해질 관점에서는 상대 습도 100%인 가습된 질소를 공급하여 전극 및 막의 전해질을 수화시키는 과정으로 구성되고, 촉매적 관점에서는 CV 사이클을 수행하여 백금 촉매에 흡착되어 있는 불필요한 오염물질, 또는 산화피막을 제거하는 과정으로 수행된다. CV 활성화법은 2.5 h 내에 활성화가 종료되어 활성화 시간을 크게 단축시킬 수 있을 뿐만 아니라, 수소 사용량도 기존 활성화 방법에 비하여 1/4 이하로 감소시킬 수 있어서 효과적인 연료전지 활성화 방법으로 제안하고자 한다.

MEA 제조 방법에 따른 상대습도 변화가 PEMFC 내구성에 미치는 영향 (Effect of various MEA fabrication methods on the PEMFC durability testing at high and low humidity conditions)

  • 김근호
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2010년도 추계학술대회 초록집
    • /
    • pp.86.2-86.2
    • /
    • 2010
  • In order to improve polymer electrolyte membrane fuel cell (PEMFC) durability, the durability of membrane electrode assemblies (MEA), in which the electrochemical reactions actually occur, is one of the vital issues. Many articles have dealt with catalyst layer degradation of the durability-related factors on MEAs in relation to loss of catalyst surface area caused by agglomeration, dissolution, migration, formation of metal complexes and oxides, and/or instability of the carbon support. Degradation of catalyst layer during long-term operation includes cracking or delamination of the layer which result either from change in the catalyst microstructure or loss of electronic or ionic contact with the active surface, can result in apparent activity loss in the catalyst layer. Membrane degradation of the durability-related factors on MEAs can be caused by mechanical or thermal stress resulting in formation of pinholes and tears and/or by chemical attack of hydrogen peroxide radicals formed during the electrochemical reactions. All of these effects, the mechanical damage of membrane and degradation of catalyst layers are more facilitated by uneven stress or improper MEA fabrication process. In order to improve the PEMFC durability, therefore, it is most important to minimize the uneven stress or improper MEA fabrication process in the course of the fabrication of MEA. We analyzed the effects of the MEA fabrication condition on the PEMFC durability with MEA produced using CCM (catalyst coated membrane) method. This paper also investigated the effects of MEA fabrication condition on the PEMFC durability by adding additional treatment process, hot pressing and pressing, on the MEA produced using CCM method.

  • PDF

CNT 및 CNF를 이용하여 제조된 전극 촉매 및 막 전극 접합체의 특성 (The Characteristic of Prepared Electrode Catalyst and MEA using CNF and CNT)

  • 임재욱;최대규;류호진
    • 마이크로전자및패키징학회지
    • /
    • 제11권1호
    • /
    • pp.59-64
    • /
    • 2004
  • 고분자 전해질 연료전지의 성능은 촉매 지지 물질의 특성에 의존한다. 본 연구에서는 백금 촉매의 지지체로서 CNF(carbon nanofibre)와 CNT(carbon nanotube)를 사용하였다. CNF와 CNT는 기상화학증착법과 메카노케미컬 공정에 의해 처리된 촉매를 이용하여 합성되었다. 백금은 고분자 전해질 연료전지의 적용을 위하여 CNF와 CNT로 지지되었다. 그 결과, 65 nm의 직경을 가지는 twisted CNF로 준비된 MEA가 가장 우수한 I-V 특성을 나타내는 것이 확인되었다.

  • PDF

스크린 프린팅법을 이용하여 제조된 고분자 전해질 연료전지에서 MEA(조합 막 전극)의 특성 (Characteristics of Fabricated MEA(Membrane Electrode Assembly) on Polymer Electrolyte Membrane Fuel Cell Made by the Screen Printing Method)

  • 임재욱;최대규;류호진
    • 반도체디스플레이기술학회지
    • /
    • 제2권4호
    • /
    • pp.27-30
    • /
    • 2003
  • The effect of fabrication method of catalytic layer on electrode performance has been investigated. Brush, spray gun and screen printer were used as fabrication tool and catalytic layers were formed by several methods in screen printing. Direct screen printing on polymer membrane, screen printing on carbon paper, and their combined method were applied. In the electrode fabricated by the screen printing method, Pt loading of Pt/C catalysts could be cut down to 50%, compared with results by the brushing and spraying methods. The best result of electrode was obtained as 0.6 V, at 1 A/$\textrm{cm}^2$ when catalytic layer was formed by the combined way.

  • PDF

이중구조 촉매층으로 구성된 MEA의 성능 평가 (Performance Evaluation on MEA with Double Layered Catalyst)

  • 김홍건;곽이구;강성수;강영우
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2006년도 춘계학술대회
    • /
    • pp.55-58
    • /
    • 2006
  • An experimental study is performed to evaluate the performance and the efficiency by humidifying MEA and by making the double-layered catalyst in a fuel cell system which is taken into account the physical and thermal concept. An electrical output produced by PEMFC(Polymer Exchange Membrane Fuel Cell) is measured to assess the performance of the stack and the efficiency is also evaluated according to the different situation in which is placed with and without the humidification of MEA(Membrane Electrolyte Assembly). Subsequently, It is found that the measured values of MEA voltage and current are influenced by the MEA temperature, humidification, and the double-layered catalyst which gives more enhanced values to apply for electric units.

  • PDF

순환전류 전압법을 이용한 이산화황 피독 PEMFC 단위전지의 성능 회복 (Single Cell Performance Recovery of $SO_2$ Poisioned PEMFC using Cyclic Voltametry)

  • 이수;진석환
    • 한국응용과학기술학회지
    • /
    • 제28권4호
    • /
    • pp.497-501
    • /
    • 2011
  • Polymer electrolyte membrane fuel cell (PEMFC) performance degrade when sulfur dioxide is present in the fuel hydrogen gas, this is referred as $SO_2$ poisoning. This paper reveals $SO_2$ poisoning on PEMFC cathode part by measuring electrical performance of single cell under 1 ppm and 5 ppm on $SO_2$ gas operating. The security of $SO_2$ poisoning depended on $SO_2$ concentration under the best operating conditions($65^{\circ}C$ of cell temperature and 100% of relative humidity between anode and cathode). $SO_2$ adsorption occured on the surface of catalyst layer on membrane electrode assembly (MEA), In addition, MEA poisoning by $SO_2$ was cumulative but reversible. After poisoning within 5 ppm $SO_2$ for 1hr, the electrical performance of PEMFC was found to recover up to about 93% by cyclic voltametry scan.