• Title/Summary/Keyword: Membership function.

Search Result 761, Processing Time 0.038 seconds

Classificatin of Normal and Abnormal Heart Sounds Using Neural Network (뉴럴네트워크를 이용한 심음의 정상 비정상 분류)

  • Yoon, Hee-jin
    • Journal of Convergence for Information Technology
    • /
    • v.8 no.5
    • /
    • pp.131-135
    • /
    • 2018
  • The heart disease taking the second place of the cause of the death of modern people is a terrible disease that makes sudden death without noticing. To judge the aortic valve disease of heart diseases a name of disease was diagnosed using psychological data provided from physioNet. Aortic valve is a valve of the area that blood is spilled from left ventricle to aorta. Aortic stenosis of heart troubles is a disease when the valve does not open appropriately in contracting the left ventricle to aorta due to narrowed aortic valve. In this paper, 3126 samples of cardiac sound data were used as an experiment data composed of 180 characteristics including normal people and aortic valve stenosis patients. To diagnose normal and aortic valve stenosis patients, NEWFM was utilized. By using an average method of weight as an feature selection method of NEWFM, the result shows 91.0871% accuracy.

Fuzzy-based Threshold Controlling Method for ART1 Clustering in GPCR Classification (GPCR 분류에서 ART1 군집화를 위한 퍼지기반 임계값 제어 기법)

  • Cho, Kyu-Cheol;Ma, Yong-Beom;Lee, Jong-Sik
    • Journal of the Korea Society of Computer and Information
    • /
    • v.12 no.6
    • /
    • pp.167-175
    • /
    • 2007
  • Fuzzy logic is used to represent qualitative knowledge and provides interpretability to a controlling system model in bioinformatics. This paper focuses on a bioinformatics data classification which is an important bioinformatics application. This paper reviews the two traditional controlling system models The sequence-based threshold controller have problems of optimal range decision for threshold readjustment and long processing time for optimal threshold induction. And the binary-based threshold controller does not guarantee for early system stability in the GPCR data classification for optimal threshold induction. To solve these problems, we proposes a fuzzy-based threshold controller for ART1 clustering in GPCR classification. We implement the proposed method and measure processing time by changing an induction recognition success rate and a classification threshold value. And, we compares the proposed method with the sequence-based threshold controller and the binary-based threshold controller The fuzzy-based threshold controller continuously readjusts threshold values with membership function of the previous recognition success rate. The fuzzy-based threshold controller keeps system stability and improves classification system efficiency in GPCR classification.

  • PDF

Optimal Design of Fuzzy Relation-based Fuzzy Inference Systems with Information Granulation (정보 Granules에 의한 퍼지 관계 기반 퍼지 추론 시스템의 최적 설계)

  • Park Keon-Jun;Ahn Tae-Chon;Oh Sung-kwun;Kim Hyun-Ki
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.15 no.1
    • /
    • pp.81-86
    • /
    • 2005
  • In this study, we introduce a new category of fuzzy inference systems based on information granulation to carry out the model identification of complex and nonlinear systems. Informally speaking, information granules are viewed as linked collections of objects (data, in particular) drawn together by the criteria of proximity, similarity, or functionality Granulation of information with the aid of Hard C-Means (HCM) clustering help determine the initial parameters of fuzzy model such as the initial apexes of the membership functions and the initial values of polynomial functions being used in the premise and consequence part of the fuzzy rules. And the initial parameters are tuned effectively with the aid of the genetic algorithms(GAs) and the least square method (LSM). An aggregate objective function with a weighting factor is also used in order to achieve a balance between performance of the fuzzy model. The proposed model is evaluated with using a numerical example and is contrasted with the performance of conventional fuzzy models in the literature.

Fuzzy-Neural Networks by Means of Advanced Clonal Selection of Immune Algorithm and Its Application to Traffic Route Choice (면역 알고리즘의 개선된 클론선택에 의한 퍼지 뉴로 네트워크와 교통경로선택으로의 응용)

  • Cho, Jae-Hoon;Kim, Dong-Hwa;Oh, Sung-Kwun
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.14 no.4
    • /
    • pp.402-410
    • /
    • 2004
  • In this paper, an optimal design method of clonal selection based Fuzzy-Neural Networks (FNN) model for complex and nonlinear systems is presented. The FNNs use the simplified inference as fuzzy inference method and Error Back Propagation Algorithm as learning rule. Also Advanced Clonal Selection (ACS) is proposed to find the parameters such as parameters of membership functions, learning rates and momentum coefficients. The proposed method is based on an Immune Algorithm (IA) using biological Immune System and The performance is improved by control of differentiation rate. Through that procedure, the antibodies are producted variously and the parameter of FNN are optimized by selecting method of antibody with the best affinity against antigens such as object function and limitation condition. To evaluate the performance of the proposed method, we use the time series data for gas furnace and traffic route choice process.

On the Mathematical Model for Evaluating the Applicability of the Vessel Traffic Management System (우리나라 연안의 해상교통관리시스템 설치를 위한 기초 연구 한국연안의 교통관제대상해역 평가에 관하여)

  • 이상화;이철영
    • Journal of the Korean Institute of Navigation
    • /
    • v.12 no.2
    • /
    • pp.43-55
    • /
    • 1988
  • The amount of cargoes and fishery production have increased continuously during the last decade due to the great growth of the Korean economy. These increasements have made our coastal traffic congested, and the future coastal traffic is also expected to increase considerably. The increased traffic can be a cause of large sea pollution as well a s greater sea casualties us as properties and human lives, which could result in a big national loss. In order to prevent the sea casualties and promote the safety of coastal traffic, the Vessel Traffic Management System (VTMS) along the Korean coastal waterway is inevitably introduced. But, the precise evaluation is necessary required prior to the implementation of VTMS because this system necessitates a huge amount of budgets. This paper aims to propose the model of evaluation process, but the evaluation as to the urgency of establishment is not only very complicated and fuzzy but also affected by the subjectivity of human. Therefore, fuzzy integral is adopted as the mathematical model of evaluation in which decision-maker can intervence by making decision considering the calculated membership-function. Four aspects, namely, the frequency of sea-casualities, the traffic volume, the frequency fuzzy day, and the complexity of waterway are selected as the item of evaluation, and the fuzzy measure are applied to the evaluation of 8 candidated regions such as the adjacent area to the port Inchen, Kunsan, Mokpo, Wando, Yosu, Pusan, Pohang, Donghae. As a result of evaluation, the priority as to the candidated regions is obtained, and the following prior execution regions, namely, the adjacent area to the port Pusan, Yosu, Mokpo & Wando are selected by considering the present situation, but, in the long run, the VTMS should be executed in the whole coast of the nation, through the cost-effectiveness analysis.

  • PDF

A New Similarity Measure based on RMF and It s Application to Linguistic Approximation (상대적 소수 함수에 기반을 둔 새로운 유사성 측도와 언어 근사에의 응용)

  • Choe, Dae-Yeong
    • The KIPS Transactions:PartB
    • /
    • v.8B no.5
    • /
    • pp.463-468
    • /
    • 2001
  • We propose a new similarity measure based on relative membership function (RMF). In this paper, the RMF is suggested to represent the relativity between fuzzy subsets easily. Since the shape of the RMF is determined according to the values of its parameters, we can easily represent the relativity between fuzzy subsets by adjusting only the values of its parameters. Hence, we can easily reflect the relativity among individuals or cultural differences when we represent the subjectivity by using the fuzzy subsets. In this case, these parameters may be regarded as feature points for determining the structure of fuzzy subset. In the sequel, the degree of similarity between fuzzy subsets can be quickly computed by using the parameters of the RMF. We use Euclidean distance to compute the degree of similarity between fuzzy subsets represented by the RMF. In the meantime, we present a new linguistic approximation method as an application area of the proposed similarity measure and show its numerical example.

  • PDF

System Implementation and Algorithm Development for Classification of the Activity States Using 3 Axial Accelerometer (3축 가속도를 이용한 활동상태 분류 시스템 구현 및 알고리즘 개발)

  • Noh, Yun-Hong;Ye, Soo-Young;Jeong, Do-Un
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.24 no.1
    • /
    • pp.81-88
    • /
    • 2011
  • A real time monitoring system from a PC has been developed which can be accessed through transmitted data, which incorporates an established low powered transport system equipped with a single chip combined with wireless sensor network technology from a three-axis acceleration sensor. In order to distinguish between static posture and dynamic posture, the extracted parameter from the rapidly transmitted data needs differentiation of movement and activity structures and status for an accurate measurement. When results interpret a static formation, statistics referring to each respective formation, known as the K-mean algorithm is utilized to carry out a determination of detailed positioning, and when results alter towards dynamic activity, fuzzy algorithm (fuzzy categorizer), which is the relationship between speed and ISVM, is used to categorize activity levels into 4 stages. Also, the ISVM is calculated with the instrumented acceleration speed on the running machine according to various speeds and its relationship with kinetic energy goes through correlation analysis. With the evaluation of the proposed system, the accuracy level stands at 100% at a static formation and also a 96.79% accuracy with kinetic energy and we can easily determine the energy consumption through the relationship between ISVM and kinetic energy.

The Design of Optimized Fuzzy Cascade Controller: Focused on Type-2 Fuzzy Controller and HFC-based Genetic Algorithms (최적 퍼지 직렬형 제어기 설계: Type-2 퍼지 제어기 및 공정경쟁기반 유전자알고리즘을 중심으로)

  • Kim, Wook-Dong;Jang, Han-Jong;Oh, Sung-Kwun
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.59 no.5
    • /
    • pp.972-980
    • /
    • 2010
  • In this study, we introduce the design methodology of an optimized type-2 fuzzy cascade controller with the aid of hierarchical fair competition-based genetic algorithm(HFCGA) for ball & beam system. The ball & beam system consists of servo motor, beam and ball, and remains mutually connected in line in itself. The ball & beam system determines the position of ball through the control of a servo motor. Consequently the displacement change of the position of the moving ball and its ensuing change of the angle of the beam results in the change of the position angle of a servo motor. The type-2 fuzzy cascade controller scheme consists of the outer controller and the inner controller as two cascaded fuzzy controllers. In type-2 fuzzy logic controller(FLC) as the expanded type of type-1 fuzzy logic controller(FLC), we can effectively improve the control characteristic by using the footprint of uncertainty(FOU) of membership function. The control parameters(scaling factors) of each fuzzy controller using HFCGA which is a kind of parallel genetic algorithms(PGAs). HFCGA helps alleviate the premature convergence being generated in conventional genetic algorithms(GAs). We estimated controller characteristic parameters of optimized type-2 fuzzy cascade controller applied ball & beam system such as maximum overshoot, delay time, rise time, settling time and steady-state error. For a detailed comparative analysis from the viewpoint of the performance results and the design methodology, the proposed method for the ball & beam system which is realized by the fuzzy cascade controller based on HFCGA, is presented in comparison with the conventional PD cascade controller based on serial genetic algorithms.

Application of Soft Computing Based Response Surface Techniques in Sizing of A-Pillar Trim with Rib Structures (승용차 A-Pillar Trim의 치수설계를 위한 소프트컴퓨팅기반 반응표면기법의 응용)

  • Kim, Seung-Jin;Kim, Hyeong-Gon;Lee, Jong-Su;Gang, Sin-Il
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.25 no.3
    • /
    • pp.537-547
    • /
    • 2001
  • The paper proposes the fuzzy logic global approximate optimization strategies in optimal sizing of automotive A-pillar trim with rib structures for occupant head protection. Two different strategies referred to as evolutionary fuzzy modeling (EFM) and neuro-fuzzy modeling (NFM) are implemented in the context of global approximate optimization. EFM and NFM are based on soft computing paradigms utilizing fuzzy systems, neural networks and evolutionary computing techniques. Such approximation methods may have their promising characteristics in a case where the inherent nonlinearity in analysis model should be accommodated over the entire design space and the training data is not sufficiently provided. The objective of structural design is to determine the dimensions of rib in A-pillar, minimizing the equivalent head injury criterion HIC(d). The paper describes the head-form modeling and head impact simulation using LS-DYNA3D, and the approximation procedures including fuzzy rule generation, membership function selection and inference process for EFM and NFM, and subsequently presents their generalization capabilities in terms of number of fuzzy rules and training data.

Fuzzy PD plus I Controller of a CSTR for Temperature Control

  • Lee, Joo-Yeon;So, Hye-Rim;Lee, Yun-Hyung;Oh, Sea-June;Jin, Gang-Gyoo;So, Myung-Ok
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.39 no.5
    • /
    • pp.563-569
    • /
    • 2015
  • A chemical reaction occurring in CSTR (Continuous Stirred Tank Reactor) is significantly affected by the concentration, temperature, pressure, and reacting time of materials, and thus it has strong nonlinear and time-varying characteristics. Also, when an existing linear PID controller with fixed gain is used, the performance could deteriorate or could be unstable if the system parameters change due to the change in the operating point of CSTR. In this study, a technique for the design of a fuzzy PD plus I controller was proposed for the temperature control of a CSTR process. In the fuzzy PD plus I controller, a linear integral controller was added to a fuzzy PD controller in parallel, and the steady-state performance could be improved based on this. For the fuzzy membership function, a Gaussian type was used; for the fuzzy inference, the Max-Min method of Mamdani was used; and for the defuzzification, the center of gravity method was used. In addition, the saturation state of the actuator was also considered during controller design. The validity of the proposed method was examined by comparing the set-point tracking performance and the robustness to the parameter change with those of an adaptive controller and a nonlinear proportional-integral-differential controller.