본 연구에서는 밸브의 입출력 류량 검출 센싱 장치 및 류량 성능 특성 곡선을 측정하는 소프트웨어를 개발하였다. 본 개발품은 기체 또는 액체의 양을 조절하는 밸브의 정밀한 제품을 생산할 수 있는 시스템이다. 멤버쉽함수의 최적한 폭을 자기동조에 의해 선정할 수 있었으며, 이를 이용하여 밸브의 압력 제어 성능을 보다 정밀하게 보정 할 수 있었다. 기체 또는 액체의 유량을 조절하는 감압 자동 조절밸브의 성능을 온라인으로 시험 할 수 있는 소프트웨어를 국산화하였다. 본 제품의 개발 결과 우수한 성능을 가진 감압 밸브 성능자동 보정 시험 검사용 소프트웨어임을 확인하였다.
본 논문에서는 소속 함수와 신경망을 이용한 유전자 발현 정보의 분류 기법을 제안한다. 유전자 발현은 유전자가 mRNA와 생체의 기능을 일으키게 하는 단백질을 만들어내는 과정이다. 유전자 발현에 대한 정보는 유전자의 기능을 밝히고 유전자간의 상관 관계를 알아내는데 중요한 역할을 한다. 이러한 유전자 발현 연구를 위한 정보를 대량으로 신속하게 얻을 수 있는 도구가 DNA 칩이다. DNA 칩으로 얻은 수백$\~$수천개의 데이터는 그 데이터만으로는 의미를 갖지 못한다. 따라서 유전자 발현정도에 따라 수치적으로 획득된 데이터에서 의미적인 특성을 찾아내기 위해서는 클러스터링 방법이 필요하다. 본 논문에서는 수많은 유전자 데이터 중에서 주요 정보를 포함한 것으로 판단되는 유전자 데이터를 피셔 기준에 의하여 선택한다. 이때 선택된 데이터들이 클러스터링에 효과적인 데이터라고 보장할 수 없으므로, 클러스터링 성능을 저해하는 유전자 데이터의 영향력을 감소시키기 위해서 소속 함수를 이용하여 특징값을 계산하고, 계산된 특징값으로 얻은 특징 벡터들을 적용하여 역전파 신경망 학습을 수행한다. 본 논문에서 제안한 유전자 발현 정보의 분류 결과로 얻은 클러스터링의 성능은 기존의 연구 결과와 비교했을 때 다양한 유전자 데이터에 대하여 향상된 인식율을 보이는 것을 확인할 수 있었다.
본 논문에서는 일반적인 신경회로망의 단점인 느린 학습속도를 획기적으로 개선한 네트워크인 Extreme Learning Machine과 전문가들의 언어적 정보들을 기술 할 수 있는 퍼지 이론을 접목한 퍼지 Extreme Learning Machine을 최적화하기 위하여 Particle Swarm Optimization 알고리즘을 이용하였다. 퍼지 Extreme Learning Machine의 활성화 함수를 일반적인 시그모이드 함수를 사용하지 않고, 퍼지 C-Means 클러스터링 알고리즘의 활성화 레벨 함수를 이용하였다. Particle Swarm Optimization 알고리즘과 같은 최적화 알고리즘을 통하여 퍼지 Extreme Learning Machine의 활성화 함수의 파라미터들을 최적화 한다. Particle Swarm Optimization과 같은 최적화 알고리즘을 통한 제안된 모델의 최적화 하고 최적화된 모델의 분류성능을 평가하기 위하여 다양한 머신 러닝 데이터 집합을 사용하여 평가한다.
본 논문은 신경회로망에 의한 퍼지제어기의 소속함수를 자동동조하는 방법을 제시하였다. 신경회로망 에뮬레이터는 퍼지제어기의 소속함수와 퍼지규칙을 재구성하는 경로를 제공하며, 재구성된 퍼지제어기는 유도전동기의 속도제어를 위해 사용한다. 따라서, 연산 시간과 시스템 성능의 관점에서 제안된 방법은 전동기 상수가 변동될 시에도 기존의 제어 방식보다 우수하다. 공간전압벡터 PWM 발생을 위한 고속연산을 수행하고 자기학습형 퍼지제어기 알고리즘을 구현하기 위해서 32비트 마이크로프로세서인 DSP(TMS320C31)을 사용하였다. 컴퓨터 시뮬레이션과 실험 결과를 통하여, 제안된 방식이 PI 제어기나 기존의 퍼지제어기보다 향상된 제어 성능을 보일 수 있음을 확인하였다.
유전자 알고리즘은 탐색, 최적화 및 기계 학습의 도구로 많이 사용되고 있는데, 구조는 단순하지만, 다양한 분야에서 적용되고 있다. 그리고 변화하는 환경에서 유연하게 대처 할 수 있는 자율운송장치의 능동적이고 효과적인 제어기에 관한 연구와 스스로 진화하여 학습할 수 있도록 하는 행동 기반 시스템에 관한 연구 또한 활발히 진행되고 있다. 퍼지 제어기 설계를 위한 소속 함수와 제어규칙의 구성 시 전문가의 경험적인 지식에 전적으로 의존하는 문제점을 가지고 있다. 본 논문에서는 자기 조직이 가능한 자율 운송 장치를 구성하기 위해서, 유전자 알고리즘을 이용하여 최적에 가깝도록 멤버십 함수를 조정했으며 제어규칙의 자기수정과 생성에 의해 제어 성능을 향상시켰다.
본 연구에서는 산업용 무인 헬리콥터의 자율비행을 위한 일환으로 퍼지 제어기를 이용하여 고도제어를 하였다. 본 논문에서는 가솔린 엔진을 사용하는 전장 3m급의 무인 헬리콥터를 설계하고 이의 재원을 이용하여 Takagi-Sugeno-Kang 형의 퍼지 제어기법으로 고도 제어기를 구성하였다. 목표 고도값과 고도의 오차, 그리고 속도를 이용하여 입력 선형 맴버쉽 함수를 생성하였다. 이렇게 구성된 멤버쉽 함수를 이용 제어입력을 생성하였고, 생성된 제어입력을 이용하여 메인 로터의 피지를 제어하고 그 결과를 이용하여 속도와 고도를 구하였다. 시뮬레이션을 통하여 설계한 퍼지제어기의 고도제어 성능을 평가하였다.
Applications of thresholding technique are based on the assumption that object and background pixels in a digital image can be distinguished by their gray level values. For the segmentation of more complex images, it is necessary to resort to multiple threshold selection techniques. This paper describes a new method for multiple threshold selection of gray level images which are not clearly distinguishable from the background. The proposed method consists of three main stages. In the first stage, a probability distribution function for a gray level histogram of an image is derived. Cluster points are defined according to the probability distribution function. In the second stage, fuzzy partition matrix of the probability distribution function is generated through the fuzzy clustering process. Finally, elements of the fuzzy partition matrix are classified as clusters according to gray level values by using max-membership method. Boundary values of classified clusters are selected as multiple threshold. In order to verify the performance of the developed algorithm, automatic inspection process of ball grid array is presented.
수행 평가는 평가자에 의한 평가 오류 가능성, 채점의 공정성과 신뢰도, 타당도 문제, 채점 기준의 모호성, 객관성 확보에 대한 어려움 등의 문제가 야기되고 있다 이런한 수행 평가의 문제점을 해결하고 교사와 학생의 수행 평가 결과에 대한 만족도를 높이기 위하여, 본 논문에서는 회계 원리 과목을 대상으로 수행 평가의 각 영역에서 영향을 미치는 요인을 분석하여 퍼지 소속 함수를 설계하고 퍼지 규칙을 정의하여 추론을 적용하여 객관적이고 신뢰성이 높은 수행 평가 방법을 제안하였다 또한 제안된 수행 평가 방법에서 수행 평가 항목은 형성 평가와 과제 평가로 구분하여 소속 함수를 설계하였다. 제안된 퍼지 수행 평가 시스템을 통해 산출된 수행 평가 결과는 평정자의 채점 오류에 대한 부담을 줄일 수 있으며 학생들에 게는 정확한 기준과 일관성 있는 채점을 통해 공평하고 신뢰성 있는 평가 결과를 제공한다.
본 논문에서는 플랜트를 위한 규칙수가 줄어든 뉴로-퍼지 모델을 얻기 위한 접근을 제안한다. 뉴로-퍼지 네트워크는 가우시안 소속함수를 가진 RBF(Radial Basis Function) 네트워크들로 구성되고 오차 역전파 학습 알고리듬에 의해 학습된다. 러프 집합 이론에서 의존도는 규칙들으 줄이는데 사용된다. 모델에서 각 규칙이 조건 소속함수 값과 플랜트의 출력 값 사이의 의온도는 플랜트를 동정하기 위하여 규칙이 얼마나 많은 공헌을 하는가를 알 수 있도록 한다. 줄어든 모델은 원래의 것으로써 동일한 성능을 유지하는 동안 선택 알고리듬은 복잡성과 구조의 잉여성을 최소화할 수 있다.
본 논문에서는 퍼지 제어기의 설계를 위한 다중 돌연변이 연산자를 갖는 Niche Meta 유전 알고리즘을 제안한다. 제안된 알고리즘에서 유전자는 유전 알고리즘에 사용되는 교배율이나 돌연변이율과 같은 구조 매개변수와 퍼지 제어기의 입$cdot$출력 소속함수를 나타내는 매개변수로 구성된다. 제안된 알고리즘은 부개체군들에 대해 퍼지 제어기의 소속함수의 매개변수를 최적화시키는 지역적 탐색을 수행하면서 전체 개체군에 대해서 최적의 구조 매개변수에 대한 전역적인 탐색을 수행한다. 다중 돌연변이 연산자는 지역적 진화의 결과에 따라 진화에 가장 적합한 돌연변이 방법으로 선택된다. 제안된 알고리즘의 효율성을 입증하기 위해 2 자유도 구륜 이동 로봇에 대한 모의 실험을 수행한다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.