• Title/Summary/Keyword: Melt-spinning

Search Result 182, Processing Time 0.024 seconds

A Study on the Dyeing Property of EVA Blended Polypropylene Fiber (EVA로 Blending된 Polypropylene Fiber의 염색성에 관한 연구)

  • 장철민;임상규;김삼수;손태원;서말용
    • Textile Coloration and Finishing
    • /
    • v.10 no.5
    • /
    • pp.13-18
    • /
    • 1998
  • Polypropylene-ethylene/vinyl acetate copolymer (PP-EVA) blends were prepared by mechanical blending using relatively semi-crystaline ethylene-vinyl acetate copolymer and polypropylene. In order to obtain dyeable PP fiber, PP-EVA blends were prepared using below 10wt.% of EVA and formed a filament by the melt spinning method. The resultant fibers had tensile strengh of 2∼3g/d, elongation of 330∼600%, initial modulus of 22∼46g/d, and exhibited markedly improved dyeing property.

  • PDF

Processing Characteristic and Liquid Crystalline Phase Behavior of PHB/PEN/PET Ternary Blend

  • Kang, Seong-Wook;Kim, Seong-Hun
    • Proceedings of the Korean Fiber Society Conference
    • /
    • 1998.04a
    • /
    • pp.20-24
    • /
    • 1998
  • Poly(ethylene 2,6-naphthalate) (PEN) has been known since 1948, when its synthesis was first reported by ICI. Co. In spite of its long history. application of PEN is limited as compared with poly(ethylene terephthalate) (PET). because PEN monomer is very expensive, and PEN exhibits relatively high melt viscosity that is not easy for fiber spinning and injection molding.(omitted)

  • PDF

Change of Fine Structure of Aliphatic Polyester fiber by strectching

  • 홍기정;박수민
    • Proceedings of the Korean Fiber Society Conference
    • /
    • 1997.04a
    • /
    • pp.328-332
    • /
    • 1997
  • Hot stretching focused on the improvement of properties of poly(L-lactic acid) fiber. Some aliphatic polyesters are biodegradable under microbial attack and the new unique applications are expected. Generally, these materials have a somewhat low melting temperature and low mechanical properties compared with the aromatic polyesters. In this study, melt-spinning of poly(L-lactic acid) was conducted. We investigated effects of the stretching and the molecular orientation of aliphatic polyester fibers on the change of fine-structure. Glass transition temperature, molecular orientation and crystallinity increased according to the increase of stretching ratio.

  • PDF

Studies on the Shape Change of Trilobal Fibers in Melt Spinning

  • Jung, Il;Kim, Sang-Yong
    • Proceedings of the Korean Fiber Society Conference
    • /
    • 1998.10a
    • /
    • pp.260-263
    • /
    • 1998
  • 섬유단면이 원형이 아닌 L, T, H, W, Y, I 등과 같은 모양을 가지는 이형단면 섬유(shaped fiber)는 그 모양으로 인해 원형단면 섬유와는 다른 광택, 마찰계수, 촉감, 굽힘강도 등을 가지고 여러 가지 용도로 쓰이고 있다. 이형단면 섬유의 용융방사시 같은 면적을 가진 원형단면 섬유와 비교해 증가된 표면적은 열과 물질 전달을 증가시키고 고화를 촉진한다. (중략)

  • PDF

Preparation of hollow fiber membrane for degassing by melt spinning and drawing method. (용융방사와 연신에 의한 용존기체 제거용 중공사 분리막의 제조)

  • 김승일;이의소
    • Proceedings of the Korean Fiber Society Conference
    • /
    • 2003.10b
    • /
    • pp.185-186
    • /
    • 2003
  • 막을 이용한 분리기술은 다양한 종류의 혼합물에서 원하는 물질을 분리 정제하는 기술로 여기에는 고-액, 액-액, 기-액분리가 모두 포함된다 현재까지 분리공정은 주로 여과, 증류, 추출, 흡착등 방법이 있으나 에너지소비가 많고, 설비투자비가 많이 들며 효율이 낮아 비경제적이라는 문제점을 가지고 있고 이와 같은 문제점을 해결하기 위하여 최근 주목받고 있는 기술이 막을 이용한 분리기술이다. 막을 이용한 분리기술의 장점은 앞서 언급한 바와 같이 에너지소비와 설비비를 최소화하면서도 고효율의 분리효과를 얻을 수 있다는 점에 있다. (중략)

  • PDF

Bulk Amophisation and Decomposition Behavior of Mg-Cu-Y Alloys (Mg-Cu-Y합금의 벌크 비정질화 및 상분해 거동)

  • Kim, S.H.;Kim, D.H.;Lee, J.S.;Park, C.G.
    • Applied Microscopy
    • /
    • v.26 no.2
    • /
    • pp.235-241
    • /
    • 1996
  • Amophization and decomposition behaviour in $Mg_{62}Cu_{26}Y_{12}$ alloy prepared by melt spinning method and wedge type metal mold casting method have been investigated by a detailed transmission electron microscopy. Amorphous phase has formed in melt-spun ribbon. In the case of the wedge type specimen, however, the amorphous phase has formed only around the tip area within about 2 mm thickness. The remaining part of the wedge type specimen consists of crystalline phases, $Mg_{2}Cu\;and\;Cu_{2}Y$. The supercooling for crystallization behaviour of the amorphous $Mg_{62}Cu_{26}Y_{12}$ alloy, ${\Delta}T_x$ has been measured to be about 60 K. Such a large undercooling of the crystallization bahaviour enables formation of the amorphous phase in the $Mg_{62}Cu_{26}Y_{12}$ alloy under the cooling rate of $10^{2}K/s$. The amorphous $Mg_{62}Cu_{26}Y_{12}$ has decomposed into crystalline phases, $Mg_{2}Cu\;and\;Cu_{2}Y$ after heat treatment at $170^{\circ}C\;and\;250^{\circ}C$.

  • PDF

A study on the process technology for controlling the shape and physical properties of melt-blown non-woven (멜트블로운 부직포의 형태와 물리적 특성을 제어하는 공정기술에 관한 연구)

  • Jae-Seok Jeong;Mikyung Kim;Jung Woo Ko
    • Journal of the Korean institute of surface engineering
    • /
    • v.56 no.5
    • /
    • pp.309-319
    • /
    • 2023
  • Non-woven fabric is a textile product made by spinning thermoplastic polymers without manufacturing processes such as stretching, doubling, twisting, weaving, and knitting to form a sheet-shaped web in which fibers are tangled with each other, and then combining them by mechanical and physical methods. In addition, the non-woven fabric manufacturing process has various raw material choices, high productivity, so it is a textile manufacturing technology that can have various uses and increase added value. This study was conducted to control the shape and physical properties of products by improving the manufacturing method of melt-blown non-woven fabrics using process technology that easily changes the shape of non-woven fabrics and improves mechanical properties. In particular, it is considered that a non-woven fabric with a thin material shape and improved mechanical properties will be easily applied to a continuous secondary battery manufacturing industry such as roll to roll operation.

Double magnetic entropy change peaks and high refrigerant capacity in Gd1-xHoxNi compounds in the melt-spun form

  • Jiang, Jun-fan;Ying, Hao;Feng, Tang-fu;Sun, Ren-bing;Li, Xie;Wang, Fang
    • Current Applied Physics
    • /
    • v.18 no.12
    • /
    • pp.1605-1608
    • /
    • 2018
  • $Gd_{1-x}Ho_xNi$ melt-spun ribbons were fabricated by a single-roller melt spinning method. All the compounds crystallize in an orthorhombic CrB-type structure. The Curie temperature ($T_C$) was tuned between 46 and 99 K by varying the concentration of Gd and Ho. A spin reorientation (SRO) transition is observed around 13 K. Different from $T_C$, the SRO transition temperature is almost invariable for all compounds. Two peaks of magnetic entropy change (${\Delta}S_M$) were found. One at the higher temperature range was originated from the paramagnet-ferromagnet phase transition and the other at the lower temperature range was caused by the SRO transition. The maximum of ${\Delta}S_M$ around $T_C$ is almost same. The other maximum of ${\Delta}S_M$ around SRO transition, however, had significantly positive relationship with x. It reached a maximum about $8.2J\;kg^{-1}\;K^{-1}$ for x = 0.8. Thus double large ${\Delta}S_M$ peaks were obtained in $Gd_{1-x}Ho_xNi$ melt-spun ribbons with the high Ho concentration. And the refrigerant capacity power reached a maximum of $622J\;kg^{-1}$ for x = 0.6. $Gd_{1-x}Ho_xNi$ ribbons could be good candidate for magnetic refrigerant working in the low temperature especially near the liquid nitrogen temperature range.

Preparation and physical properties of biodegradable polybutylene succinate/polybutylene adipate-co-terephthalate blend monofilament by melt spinning (용융방사에 의한 생분해성 PBS/PBAT 블랜드 모노 필라멘트 제조 및 물리적 특성)

  • Park, Seong-Wook;Kim, Seong-Hun;Choi, Hea-Sun;Cho, Hyun-Hok
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.46 no.3
    • /
    • pp.257-264
    • /
    • 2010
  • In order to improve the breaking strength and elongation of Polybutylene succinate (PBS) monofilament, the monofilament was produced by blending PBS and Polybutlyne adipate-co-terephthalate (PBAT). The PBS/PBAT blend monofilament was prepared by the melt spinning system, and the weight ratios of the compositions of PBS/PBAT was 100/0, 95/5, 90/10 and 85/15, respectively. The breaking strength, elongation, softness and crystallization of PBS/PBAT blend monofilament were analyzed by using a tensionmeter, softness measurement, X-ray diffractometer in the both dry and wet conditions. The PBS/PBAT blend monofilaments were spun in the take-up velocity of 1.19m/sec under the drawing ratio of 6.8:1 condition. The production volumes of PBS/PBAT blend monofilaments showed 20% less than that of Nylon. The breaking strength of PBS/PBAT blend monofilaments were decreased as PBAT contents increased, while elongation and softness were increased. In case of PBAT content were over 5%, the breaking strength, elongation and softness of PBS/PBAT blend monofilaments were not shown to increase in spite of increasing in PBAT contents. Based on these results, it was possible to make the monofilaments with the maximized physical properties when the PBAT contents at 5%.